
1 March 1999 Delphi Informant

March 1999, Volume 5, Number 3

Cover Art By: Darryl Dennis

ON THE COVER
6 Active Server Pages —— Ron Loewy
At the foundation of Microsoft’s Web-development architecture, ASP has
become popular as well. Mr Loewy explores the ASP object model, and
discusses how to take advantage of it from a Delphi-developed
Automation object — an object available for download.

FEATURES
12 Patterns in Practice
The Singleton Pattern —— Xavier Pacheco
Mr Pacheco begins a new column devoted to design patterns, and their
creation and use with Delphi. He gets things started with the Singleton
pattern, which ensures only one instance of a class exists.

21 Multi-Tier
The Briefcase Model —— Bill Todd
The Briefcase Model is easy to understand: download part of a database
onto a laptop, and run. Now, implementing it — with or without MIDAS
— is also relatively straightforward, as Mr Todd explains.

25 Undocumented
Shell Notifications —— Kevin J. Bluck and James Holderness
It’s undocumented, so just how does Windows keep itself abreast of cur-
rent events, such as a file being created or moved? Misters Bluck and
Holderness reveal all the secrets, including something called PIDLs.

REVIEWS
34 ReportBuilder Pro 4.0

Product Review by Bill Todd

DEPARTMENTS
2 Delphi Tools
5 Newsline
37 File | New by Alan C. Moore, Ph.D.

2 March 1999 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

OCERIS Ships AutoSQL 2.1

OCERIS, Inc. announced

AutoSQL 2.1, which takes
existing Paradox, dBASE,
and Access 95/97 tables and
creates three types of out-
put. The first is CREATE
TABLE and CREATE
INDEX statements for cre-
ating the tables in a SQL
environment. It will option-
ally create INSERT INTO
statements for the data
inside the tables. The sec-
Component Store Announ

toolsfactory Announces C

LMD Innovative Releases
ond and third out-
puts are Delphi code
compatible with ver-
sions 2, 3, and 4,
and C++Builder
code compatible
with C++Builder 3.

OCERIS, Inc.
Price: US$49.95
E-Mail: oceris@oceris.com
Web Site: http://www.
oceris.com
ces SQLQuery 2.2

Component Store Ltd.

announced the release of
SQLQuery 2.2, an add-on
database component designed
for use with Delphi.
SQLQuery 2.2 can be used to
build thin Win32 or ActiveX
clients with Microsoft’s SQL
lassExplorer Pro 2.1

 LMD-Tools 4
Server as a back end. New
features in version 2.2 include
direct update without
TSQLUpdate through the
UpdateParams property, sup-
port for optimistic concurren-
cy in UpdateParams, asyn-
chronous Open and
ExecSQL, InfoPower support,
local sort of fields in a result
set, and added dataset events
for easier SQL error handling.

Component Store Ltd.
Price: US$249 for a single-developer
license; multiple developer and site
licenses are available.
Phone: (800) 903-4152
Web Site: http://www.
component-store.com
toolsfactory GmbH (LLC)
announced ClassExplorer Pro
2.1, an integrated software
development tool that pro-
vides object-oriented code
navigation, creation, and doc-
umentation for Inprise’s
Delphi and C++Builder devel-
opment environments.

ClassExplorer Pro 2.1 sup-
ports features such as Class
View and Class Hierarchy,
which simplify the source view
and class navigation of com-
plex projects. Class member
creation features simplify the
creation of methods, proper-
ties, and fields to classes. Code
documentation features offer
customizable, automatic,
online-help generation from
source code, including indexes
and hierarchical tables.

toolsfactory GmbH (LLC)
Price: US$99
E-Mail: sales@toolsfactory.com
Web Site: http://www.toolsfactory.com
LMD Innovative
released the LMD-
Tools 4 component
package, a set of
native Delphi VCL
components and
routines for various
programming tasks.

Version 4 includes
customizable, trans-
parent edit and
memo controls (without
text limitations); an exten-
sive FileGrep component;
Calendar controls; an
enhanced dynamic-splitter
component; dockable tool-
bars; and improved han-
dling of data containers for
bitmap-/wave-files or other
data resources (now sup-
porting native data com-
pression).

Both the Standard and
Professional editions
include over 150 compo-
nents for Delphi 3 and 4
and C++Builder 3, online
help, over 60 demonstra-
tion projects, and
WPTools Light
(LMD-Edition),
RTF-Editor, and
RTF-Label.
Version 3.5 is
also included for
compatibility
with Delphi 1
and 2 and
C++Builder 1.

LMD Innovative
Price: Standard Edition, US$149;
Professional Edition, US$199 (includes
source code of the component library,
additional add-ons, and C++Builder
support).
Phone: +49 271 355489
Web Site: http://www.lmd.de

http://www.oceris.com
http://www.oceris.com
http://www.toolsfactory.com
http://www.component-store.com
http://www.component-store.com
http://www.lmd.de

3 March 1999 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

Raize Announces Raize Components II

Raize Software Solutions,

Inc. announced Raize
Components II, the next gen-
eration of the company’s
library of native VCL controls
for Delphi and C++Builder.

Raize Components II intro-
duces over 30 new compo-
nents, including
TRzCheckTree,
TRzBackground, TRzButton,
and TRzEditListBox.

TRzCheckTree is a tree view
control that associates a check-
box with each node in the
tree, and automatically updates
the states of parent and child
nodes when the state of the
current node changes. The
TRzBackground component
enables developers to add gra-
dients and tiled textures to
forms, including MDI frames.
The TRzButton component
supports multi-line captions,
3D text styles, and custom
button face colors. The
TRzEditListBox supports auto-
matic run-time editing of
items in the list using a popup
edit window.

Raize Components II also
introduces custom framing
properties, which allow devel-
opers to select which sides of
the frame will appear. As a
result, all the Raize
Primoz Gabrijelcic Annou

CenturionSoft Announces
Components can appear as
line-style controls. In addition,
the custom framing properties
support showing a second
frame style whenever the
mouse is positioned over the
control, or the control receives
the input focus.
The majority of components

in Raize Components II have
an associated context menu
that provides quick access to
common settings and proper-
ties without requiring the
developer to switch to the
Object Inspector and search
for properties.

Raize Components II intro-
duces specific features for
nces GpProfile 1.1

EuroFonter
Delphi 4 developers. For
example, the TRzPanel,
TRzSizePanel, and TRzSplitter
components utilize a custom
docking manager to manage
controls docked in their client
areas. The new docking man-
ager displays the captions of
docked controls instead of the
default “grabber” bars.

Raize Components II pro-
vides support for Delphi ver-
sions 1, 3, and 4, and
C++Builder 3.

Raize Software Solutions, Inc.
Price: US$249
Phone: (630) 717-7217
Web Site: http://www.raize.com
Primoz Gabrijelcic
announced the availability of
GpProfile 1.1, a profiler for
Delphi 2, 3, and 4.
GpProfile 1.1 is a source-

instrumenting profiler that
works with Windows 95/98
and NT 4/5. It features multi-
threaded program support, the
ability to instrument proce-
dures (written in built-in
assembler), the ability to
show/hide an integrated
Source Preview window, a syn-
tax-highlighted source preview,
and an API for profiling con-
trol. With GpProfile 1.1, pro-
filing results can be exported to
standard delimited format.

In addition, GpProfile 1.1
offers conditional API execu-
tion with metacomments, a
layout manager, the ability to
display and browse
caller/called hierarchy, context-
sensitive help, and free, com-
plete source code (Delphi 4).

Primoz Gabrijelcic
Price: Free
E-Mail: primoz.gabrijelcic@
altavista.net
Web Site: http://www.eccentrica.
org/gabr
CenturionSoft announced
EuroFonter, a utility that
adds the euro symbol to all
TrueType fonts. Any docu-
ment created and/or received
will display the correct sym-
bol, avoiding the risk of dan-
gerous misunderstandings.
EuroFonter offers a wizard-
style interface that makes it
easy to install and use.

CenturionSoft
Price: US$39.95
Phone: (202) 293-5151
Web Site: http://www.centurionsoft.com

http://www.raize.com
http://www.centurionsoft.com
http://www.eccentrica.org/gabr
http://www.eccentrica.org/gabr

4 March 1999 Delphi Informant

Delphi
T O O L S

New Products
and Solutions

Datasoft Reveals GhostFill SDK

Datasoft (Pty) Ltd

announced the release of the
GhostFill Software Developers
Kit (SDK), a developers kit
for the company’s productivi-
ty add-in for Microsoft
Word.

GhostFill is a document
assembly tool that simplifies
and expedites the production
of complex documents. With
the SDK, developers can
Eagle Software Releases
integrate with GhostFill and
produce documents from
within their applications —
even across the Internet.
The GhostFill SDK includes

an ActiveX control for inte-
gration with Delphi,
Microsoft Visual Basic and
Visual C++, and others. It
also ships with a set of sample
applications, comprehensive
documentation, and a fully
CDK 4 and reAct 4
functional copy of GhostFill.
GhostFill’s COM-based

architecture encourages devel-
opers to extend its function-
ality by adding custom OLE
automation servers to its
environment.

Datasoft (Pty) Ltd
Price: Free for download.
Phone: +27 21 683 4680
Web Site: http://www.ghostfill.com/sdk
Eagle Software announced
CDK 4, a suite of code gen-
eration and modification
wizards that integrate with
Delphi 4. The company
also announced reAct 4, a
test program generator for
Delphi.

CDK 4 includes wizards
for building descending,
composite, business, link-
ing, embedded, and dialog
components, as well as
property editors, compo-
nent editors, and packages.

The CDK Package Wizard
allows developers to build
package sets consisting of a
design-time package and one
or more run-time packages.
CDK separates and main-
tains run-time and design-
time code, so users are free
to focus on the essence of
class design.

CDK 4 can also modify any
existing Delphi
source code. CDK’s
modification engine
parses, then folds,
new code directly
into the source file.

CDK 4 allows users
to edit generated
source code manually
(in Delphi) and con-
tinue to modify the
source with CDK
wizards interchange-
ably. Also, CDK gen-
erates all code in the
user’s coding style, so
reformatting by hand
after generation is unnecessary.
CDK 4 employs a code

reuse engine, allowing users to
drag and drop “smart code”
(CDK Templates) into their
class designs. CDK 4 ships
with 34 CDK Templates and
a wizard for creating custom
CDK Templates.

Also announced was reAct
4, which generates the code
needed to evaluate any
selected component. reAct
4 test programs consist of a
run-time component
inspector, a test form, and
an event log.

With reAct 4, users can
dynamically create and
destroy instances of the test
component, view and
change properties, and see
the effects of those changes
on the test component at
run time. Users can see
events as they occur; con-
trol panel lights flash when
corresponding events are
triggered.

reAct 4 also includes
built-in streaming tests,
making it easier to verify
the component’s ability to
save and load its state infor-
mation to a file.

Because test programs
generated by reAct are
Delphi programs, users are
free to modify and enhance
the generated source as
needed. reAct 4 is fully
compatible with other
third-party testing tools
that work with Delphi.

Eagle Software
Price: CDK 4, US$289 per copy; reAct
4, US$139 per copy; site licenses are
available for both products.
Phone: (310) 441-4096
Web Site: http://www.
eagle-software.com

http://www.ghostfill.com/sdk
http://www.eagle-software.com
http://www.eagle-software.com

5 March 1999 Delphi Informant

News
L I N E

Mar ch 1999

Inprise Launches CORBA and Java Tour for Enterprise IT Managers

Inprise Delivers Enterprise Application
Server Solution
Scotts Valley, CA —
Inprise Corp. announced
a North American series
of management-level
CORBA and Java seminars
designed to show IT execu-
tives the strategic business
benefits of large-scale,
platform-independent, and
standards-based enterprise
application development.

Distributed Enterprise
Solutions on Tour consists
of two one-day seminars:
“CORBA Essentials for
Effective Internet
Computing” and “Building
Distributed Applications
with Java.” Participants can
attend one or both days of
the series.

“CORBA Essentials for
Effective Internet
Computing” will cover the
role CORBA plays in enter-
prise systems and how to
use distributed objects to
bring high performance to
Inprise Announces New V
intranet and Internet appli-
cations, whether they are
written in Java, C++, or
other languages.

“Building Distributed
Applications with Java” will
include discussions on the
design and development of
distributed systems, the
deployment and manage-
ment of Java applications,
the benefits and drawbacks
of two- and three-tier com-
puting, and the use of
Enterprise JavaBeans as
ersion of MIDAS
standardized reusable n-tier
components.

For more information on
Distributed Enterprise
Solutions on Tour, and to
register for a seminar, visit
http://www.inprise.com/
events/seminars, or call
(800) 255-4388. The standard
registration fee is US$395 per
person for one day, and
US$665 for both days. Special
corporate/group discounts
are available.
New York, NY — Inprise
Corp. introduced the
Inprise Application Server,
a solution that accelerates
and simplifies the develop-
ment, integration, deploy-
ment, and management of
distributed enterprise appli-
cations. The Inprise
Application Server enhances
an enterprise’s competitive-
ness by streamlining its IT
processes and application
lifecycle.

Key features of the Inprise
Application Server include
support for all major pro-
gramming languages, client
interfaces, Web servers,
database servers, hardware
platforms, and legacy envi-
ronments, including DCE
and COM; an object-com-
munications infrastructure
built with Inprise
VisiBroker; an open and
extensible architecture
based on industry stan-
dards, such as CORBA,
C++, Java, and HTML;
support for the Sun Solaris,
HP-UX, IBM AIX, and
Microsoft Windows NT
platforms; JBuilder for
Application Server; Web
deployment of Internet-
based, platform-indepen-
dent applications;
VisiBroker Integrated
Transaction Service (ITS);
and AppCenter, a distrib-
uted applications-level
management tool.

For more information and
pricing, call Inprise direct
corporate sales at (831)
431-1064, or visit
http://www.inprise.com/
appserver.
Scotts Valley, CA — Inprise
Corp. announced version 2 of
Inprise’s MIDAS (Multi-tier
Distributed Application
Services), which simplifies
and hastens the development,
integration, and deployment
of thin-client, distributed-
database applications.

MIDAS speeds data access
across all application tiers,
from the client to the data-
base server, through remote-
data access and intelligent
data synchronization.
Enterprises can now devel-
op MIDAS applications
with all of Inprise’s enter-
prise tools, including
JBuilder, Delphi, and
C++Builder. In addition,
MIDAS 2 supports Java,
CORBA, and COM/MTS.
MIDAS 2 now includes
support for intelligent mas-
ter/detail and nested tables,
as well as Oracle8i
object/relational databases.
Finally, through integration
with the Inprise Application
Server, customers can man-
age their MIDAS-produced
applications.

One of the key offerings
of MIDAS 2 is MIDAS
Client for Java, which sim-
plifies the development of
cross-platform, Pure Java
thin clients for distributed-
database applications.
MIDAS Client for Java
includes a set of Java Beans,
or components, designed
for JBuilder 2. These Pure
Java components give devel-
opers cross-platform client
access to high-performance
multi-tier MIDAS applica-
tions.

For more information and
pricing, call Inprise direct
corporate sales at (831)
431-1064, or visit
http://www.inprise.com/midas.
LEAD Announces VCL
Components for Delphi

LEAD Technologies, Inc.
announced support for Inprise
Corp.’s VCL (visual component
libraries). The new LEADTOOLS
VCLs will offer developers the

same imaging functionality as the
LEADTOOLS ActiveX controls,

but will provide this functionality
in a native Delphi component

format. The VCL will be available
throughout the LEADTOOLS

product line.

http://www.inprise.com/events/seminars
http://www.inprise.com/events/seminars
http://www.inprise.com/midas
http://www.inprise.com/appserver
http://www.inprise.com/appserver

6 March 1999 Delphi Informant

On the Cover
ASP / HTML / Automation / Delphi 3, 4

By Ron Loewy
Active Server Pages
Building ASP Controls with Delphi

Active Server Pages (ASP) is at the foundation of Microsoft’s Web develop-
ment architecture. ASP is an extension to Microsoft’s IIS (Internet

Information Server) Web server, and is available free of charge on any operat-
ing system that has IIS or Microsoft’s PWS (Personal Web Server) installed. This
means most new machines with Windows 98 or Windows NT come with ASP.
Adding ASP to older Windows 95/NT installations is easy; the code is available
for download from Microsoft’s Web site. It’s also shipped with several other
Microsoft tools, such as Visual InterDev, FrontPage, etc.
ASP is implemented as an ISAPI extension to
IIS. Think of it as an optimized CGI pro-
gram for Microsoft’s Web servers that can
serve HTML pages created dynamically using
some logic. These are not your run-of-the-
mill, static HTML pages; code is used to
process input from the user, access databases,
or use some other mechanism to create what
users see in their Web browsers.

Writing ASP applications is relatively easy.
ASP code is a combination of HTML and
scripts written in JavaScript, VBScript, or
any other ActiveScript-capable language
engine. Microsoft provides a set of pre-
defined Automation objects that can be
used from ASP applications. With some of
the common ActiveX and Automation
objects available on Windows, writing data-
base-driven applications for the Internet
and/or an intranet is easy. (See my article
“Much ADO about the Web” in the
December, 1998 Delphi Informant.) You can
write ASP applications using your trusty
copy of Notepad (or EDLIN, if you’re a real
masochist), but most people like to use one
of the tools that support ASP development.
Microsoft’s Visual InterDev comes to mind,
and there are many other third-party solu-
tions to choose from.
Extending the functionality of ASP-writing
Automation objects is easy. The ADO article I
just mentioned shows how to create a simple
Automation object that can access a database
using ADO, and can be used from an ASP
application. The Automation object developed
in that article did not know it was used from
an ASP application, and could be used from
any COM-enabled development tool. In this
article, we’ll explore the ASP object model,
and discuss how to take advantage of it from a
Delphi-developed Automation object. We’ll
also create the Automation object (the project
described in this article is available for down-
load; see end of article for details).

The ASP Object Model
Most of Microsoft’s new APIs appear as a col-
lection of objects that represent the task at
hand. In Microsoft speak, this is commonly
referred to as an object model. Some of the
examples for the use of object models as APIs
include the Document Object Model (DOM),
which allows object-oriented access to the con-
tents of an HTML document; the ActiveX
Data Objects (ADO), which encapsulate the
database access primitives as a set of objects;
and true to form, the ASP object model, which
represents the transactions and entities that cre-
ate a Web application as a set of objects.

On the Cover
There are five objects you’ll need to learn to write efficient
Web applications with ASP:
1) The Request object is used to hold information about the

request the user sent when accessing the application.
2) The Response object is used to encapsulate the HTML

response the application will send back to the browser.
3) The Server object is used to manage the ASP environ-

ment. You will usually use it as a launching pad for your
own ActiveX and Automation objects.

4) The Session object is used to store information specific to
the user of the application. This allows the application to
maintain state for a specific user (which requires using
expanded URLs, or cookies in raw CGI programs).

5) The Application object is used to store and manage
application information shared among all sessions of
the application.

The Request Object
The Request object encapsulates the information sent from
the client’s browser to the Web server when the user requests
a resource from the ASP application. To understand the
Request object, let’s look at what happens when a user clicks
on a link to a page in the ASP application:

The user clicks on the link’s title.
The browser uses the anchor information defined in the
<A...> tag that defines the link to find the server that
hosts the ASP application. After a connection is estab-
lished, an HTTP GET request is sent to the server with
the path to the ASP page.
If the URL had additional information to pass to the appli-
cation using the HTML URL?Parameters syntax, the para-
meters are sent to the application as part of the request.
Additional information about the user and the browser is
sent in HTTP headers along with the request.
If the user’s browser has had cookies defined in the past
for the resource, these cookies are sent in additional
HTTP headers.

If the user fills out a form and clicks the Submit button that
connects to the ASP application via a <FORM ...> tag (whose
action points to the ASP application), the request sequence is
repeated. Usually, however, an HTTP POST request is sent,
and the names of the variables in the forms and the values the
user entered are sent after the HTTP headers.

When the request is received by the Web server, it determines
this is a request for an ASP script, using the main program’s
extension (e.g. mypage.asp), and the ASP interpreter is acti-
vated with the request information.

ASP parses the request information and allows you to access it as
properties and collections of the Request object. The QueryString
property, for example, includes all the parameters passed in the
URL after the ? character. If, for example, the URL was
http://path-to-server/mypage.asp?Name=Ron, we could find the
value of the Name parameter using the following syntax:

Your Name is <%= Request.QueryString("Name") %>
7 March 1999 Delphi Informant
The ServerVariables collection provides information about
pre-defined environment variables that were passed by the
Web server. For example:

Request.ServerVariables("PATH_TRANSLATED")

will return the path of mypage.asp on the local machine’s file
system. This can be very useful if you need to access external
media, or other files that are installed in the same directory as
your ASP pages.

The Form collection provides information to values passed
in form controls. If, for example, our user entered a credit-
card number in a form defined using the following HTML
code snippet:

<Form Action="http:// path-to-server/mypage.asp">

...

Credit Card Number <input name="CreditCard" Size=16>

...

we can access it using the following syntax (in JavaScript):

CodeToCheck = Request.Form("CreditCard");

Finally, cookies can be accessed via the Cookies collection:

Last time you visited was <%= Request.Cookies("LastVisit") %>

You can do more with the Request object and the different
properties and collections it provides. Any good ASP refer-
ence will include all the information.

The Response Object
The Response object allows you to create the output the user
will see in the browser as a result of his or her request. It pro-
vides access to the HTTP headers that are sent with the
request, and allows you to build the response from start to end.

Because the result is built sequentially from the headers to
the end of the response, you have to set the values of the
headers, cookies, etc. before you write the content of the
result. The Response object has a property called Buffer that,
when set to True, caches all the output, and doesn’t send it
to the user until the Flush or End method has been called. If
you don’t want to write sequentially to the output, remem-
ber to set Buffer to True at the start of your ASP page.

The following properties can be used to set the HTTP
headers of the page:

The Cookies collection can set cookies that are related to
your ASP page. You will get these cookies in the Request
object the next time the user connects to your page.
The ContentType property sets the type of response you
send. By default, text/html is assumed, but if your
response is an image, you’ll need to set it to image/gif,
image/jpeg, etc.
The Status property sets the status that is returned. By
default, “200 OK” is returned, and the browser will dis-

On the Cover
play the response. If, however, the user did not provide
information, you can set a different response (e.g. “401
Unauthorized” if the user’s password wasn’t found in your
database).
The Expires (or ExpiresAbsolute) property can be used to
define when the response expires from the browser’s
cache, and the browser needs to connect to the server
again to receive an updated page. Assume, for example,
that you write a stock ticker application that displays up-
to-date stock prices. Assuming your database is updated
every 15 minutes, set Expires to 15 to ensure that if the
user tries to access the page in 10 minutes, no network
bandwidth will be used. But if the user tries after 20
minutes, he or she will get updated information.

You can also write any HTTP header using the Response
object’s AddHeader method. Another method related to
headers is the Redirect method. Use this method to redirect
the browser to a new URL. This can be useful if you need
to route users to different URLs based on their cookie val-
ues, or other information they provide.

After the headers have been set, it’s time to create the content.
ASP creates the content from the HTML code in the page;
your scripts or Automation objects can write to the output
stream using the Response object’s Write method. For example:

<%

if (SomeCondition) {

Response.Write("xxxx")

}

else {

Response.Write("yyyy")

}

%>

Here, the Response object is used to change the output based
on some condition.

The Write method assumes you’re writing to an HTML
output (ContentType text/html) and will automatically
translate your strings to valid HTML representation, e.g. >
will be translated to >. If you want to write values that
won’t be translated (for example, when creating a GIF
image), use the BinaryWrite method.

The Server Object
The Server object has several utility functions useful to an
ASP application. HTMLEncode and URLEncode take plain
string data and convert it to string data that can be
included in HTML source. For example:

<%= Server.HTMLEncode("A < 2") %>

will be translated to:

A < 2

The browser will be able to display this code properly (A <
2), where, if you wrote A < 2 in the source, the browser
8 March 1999 Delphi Informant
will get confused and think that < 2 ... is a tag it doesn’t
recognize, and will ignore your code.

The most important function of the Server object is the
CreateObject function. This function is used to start an
Automation object. As a Delphi programmer, the CreateObject
function is the way you can start your Delphi-developed
objects to interact with an ASP application. The CreateObject
function takes a ProgID as its parameter. You can determine
the ProgID of your Delphi object from the Type Library edi-
tor. It’s the name of the library separated by a dot from the
name of the Automation object, e.g. MyLib.MyObj.

The Session Object
HTTP is a stateless protocol. When a client connects a Web
server, the Web server answers and disconnects. The next
time you connect to the server, the server has no indication
that you called it earlier, and has no way to tell your connec-
tion from a connection made by another user hundreds or
thousands of miles away from you.

Imagine a simple shopping application. The user wants to
browse the available products and collect them in a virtual
shopping basket. When finished browsing, the user
advances to the checkout line and pays for the selected
items. If your application doesn’t save the state of the user’s
shopping basket, how will you know what items the user
wants to purchase? How will you be able to differentiate
between user A, who wanted to purchase the US$300
Magic food processor, from User C, who wants two laser
printers and 15 network cards for a total of US$894?

CGI programs usually solve the state problem using one of
two methods: expanded URLs that are generated dynami-
cally by the application, or cookies stored in the user’s
cookie file. Both approaches are cumbersome. ASP uses
the cookies approach behind the scenes and exposes the
state information using the Session object.

While the Session object has some properties that will allow
you to recognize the user, or to time out or abandon the
session, its most important use is as a storage space for ses-
sion information. Coming back to the shopping basket
problem, you could store the information about user C’s
chosen products using the following:

Session("LaserPrinter") = 2;

Session("NetworkCards") = 15;

Session("FoodProcessor") = 0;

The Session object’s Session_OnStart event is called when a new
session is created. The code in this event can be used to create
session objects, or initialize variables used by the session. The
Session_OnEnd event is called when the session is terminated.

The Application Object
The Application object is used to store information that is
global in scope to the application, and is shared between

On the Cover

 Delphi’s Type Library editor.
all the users of an application. The Application object can
also be used to start Automation objects used across the
application. The Application_OnStart event is activated
before the first Session is created, and can be used to ini-
tialize global application variables, or start global
Automation objects. The Application_OnEnd event is the
last event called when the last session used in the applica-
tion quits.

Delphi and ASP
To write code that takes advantage of the ASP object
model, you must start by importing the ASP type library
to Delphi. I use tlibimp.exe, which has been available in
Delphi’s \bin directory since Delphi 3.02. Executing
tlibimp.exe on the file ASP.dll, installed with ASP, results
in ASPTypeLibrary_TLB.pas and ASPTypeLibrary_TLB.dcr.
We’ll use the Pascal file in our Automation object. (You’ll
have to look for asp.dll on your hard disk. I found the ver-
sion that came with the copy of PWS installation on
Windows 95 under C:\Windows\System\INetSrv). Once you
import the ASP type library, you’re ready to create your
Automation object with Delphi.

Like every other Automation object, you’ll want to start by
creating an ActiveX library; click on ActiveX Library on the
ActiveX page of the New Items dialog box (File | New). I
saved my library as DIASP.dpr in my work directory. Now
add an Automation object to the project (also from the
New Items dialog box). I gave the name ASPObject to the
new class, and saved the implementation unit as
ASPObj.pas.

Every Automation object that wants direct access to the ASP
objects needs to add the ASPTypeLibrary_Tlb unit created
when we imported the ASP DLLs to the uses statement. We
can now add a reference to a scripting context in the object
definition. A scripting context is an ASP interface named
IScriptingContext that provides our object with access to the
ASP objects in the context of the session that uses the object.

Our class definition will now look like this:

type
TASPObject = class(TAutoObject, IASPObject)
private
FScriptContext: IScriptingContext;

public
property ScriptContext: IScriptingContext

read FScriptContext;

end;

When an Automation object is used by an ASP
application, the ASP engine checks if the object
implements the OnStartPage method before any
page processing is performed. If this method is
implemented, it is called and a scripting context is
passed to the object. From the Type Library editor,
I added a new OnStartPage method (the completed
type library is shown in Figure 1). Figure 1:
9 March 1999 Delphi Informant
I created five OleVariant variables to represent the main ASP
objects, and I assigned them in this method:

procedure TASPObject.OnStartPage(

AScriptingContext: IUnknown);

begin
FScriptContext := AScriptingContext as IScriptingContext;

FASPRequest := ScriptContext.Request;

FASPResponse := ScriptContext.Response;

FASPSession := ScriptContext.Session;

FASPServer := ScriptContext.Server;

FASPApplication := ScriptContext.Application;

end; // TASPObject.OnStartPage

We can now create a simple HelloWorld procedure to test our
object (again, use the Type Library editor to add the method):

procedure TASPObject.HelloWorld;

begin
ASPResponse.Write('<h2>Hello World</h2>');

end; // TASPObject.HelloWorld

The code for our object is ready. We need to compile the project
and register the ActiveX server (Run | Register ActiveX Server).

To test the object, I created a simple HelloWorld.asp, and
installed it in a virtual directory defined in my Web server as
DIASP. This directory must have read and script authorization.

The code that calls our object from the ASP file is simple:

<%

Set ASPObj = Server.CreateObject("DIASP.ASPObject")

%>

<H3>This page uses the ASP aware Delphi automation object </H3>

<% ASPObj.HelloWorld %>

The result is shown in Figure 2. Notice that our Delphi
code accessed the output stream directly via the ASP
Response object.

Why Use Delphi?
It’s obvious from this sample that it is easy to access the

On the Cover

Figure 2: A simple HelloWorld.asp.

procedure TASPObject.VerifyCard;

var
VerifyObject: TCreditCardVerify;

begin
VerifyObject := TCreditCardVerify.Create(nil);
try
VerifyObject.CardNumber :=

ASPRequest.Form('CardNumber');

VerifyObject.SetCardTypeByName(

ASPRequest.Form('CardType'));

VerifyObject.SetExprDateFromStr(

ASPRequest.Form('ExprDate'));

ASPResponse.Write('Checked Validity for Card Number ' +

VerifyObject.CardNumber + '
');

case VerifyObject.Valid of
ccvValid : ASPResponse.Write('Card is valid!');

ccvExpired : ASPResponse.Write('Card Expired!');

ccvInvalid : ASPResponse.Write(

'Card did not pass validation!');

end;
finally
VerifyObject.free;

end;
end;

Figure 3: The VerifyCard method uses the credit-card verifica-
tion component.

Figure 4: After the verification component does its job, the
result is reported back using the ASP Response object.
ASP objects from our Delphi code, but why would we
even bother to do that if we can write the same code in
VBScript or JScript?

Using Delphi to interact directly with the ASP objects
provides several advantages. The first is speed; a compiled
Delphi object will be much faster than a script that needs
to be interpreted by the Active Script engine used by ASP.
If the logic you need to perform is complicated, your users
will receive better service if the calculations are performed
in a compiled module. The other advantage to using
Delphi to write your logic is the power of the language,
and the ability to use existing code. I would not bother
with Delphi code for simple ASP scripts, but when the
need for complicated logic or business rules arises, I would
rather use Delphi’s strong development tools, debugging
10 March 1999 Delphi Informant
facilities, and existing code modules over the primitive
tools available for script development.

Let’s create, for example, a credit-card validation routine in
Delphi. Assume your Web page receives credit-card orders,
and you need to verify that the credit-card number is valid.
Usually, you’ll need some software that can connect to verify
the credit-card information supplied and use your merchant
account, but for the purpose of this article, we’ll assume that
using the credit-card number validation algorithm is enough.
While this algorithm won’t rival the scheduling problems the
NT operating system developers had to face, I wouldn’t want
to implement it in VBScript.

The CcardVer.pas unit defines a Delphi object
TCreditCardVerify that, based on the properties CardType,
ExprDate, and CardNumber, will return the validity of the
card information. We will now add a new method to our
object that will access credit-card information sent from
an HTML form, verify it, and return a response to the
user. (Don’t forget to use the Type Library editor to add
the new VerifyCard method.)

The code for the new method uses the credit-card verification
component, as shown in Figure 3. This code uses the ASP
Request object to access the parameters passed from the
CreditCardVerify.html form. After the verification compo-

On the Cover
nent does its job, the result is reported back using the ASP
Response object (see Figure 4).

Conclusion
Creating ASP-aware objects with Delphi is almost as easy as
creating any other kind of Automation object. If you are
writing ASP applications, Delphi code can be used to speed
calculations and development time.

Many tasks you’ve done in Delphi can now be exposed on
the Web using the best of both worlds: Delphi’s ease of code
development and performance with ASP’s easy deployment
and content authoring. If you have large amounts of Delphi
code that you need to Web-enable, and ASP is your Web
development technology of choice, the technique described
in this article will save you hours of porting.

More information about ASP can be found on Microsoft’s
Web site (http://www.microsoft.com), or as part of the
MSDN that ships with Visual InterDev or Visual Studio.
Many authoring tools support the creation of ASP pages.
Or, you can always fire up Notepad. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\99\MAR\DI9903RL.

Ron Loewy is a software developer for HyperAct, Inc. He is the lead developer
of eAuthor Help, HyperAct’s HTML Help-authoring tool. For more information
about HyperAct and eAuthor Help, contact HyperAct at (515) 987-2910, or
visit http://www.hyperact.com.
11 March 1999 Delphi Informant

http://www.microsoft.com
http://www.hyperact.com

Patterns in Practice
Patterns / OOP / Persistence / Windows registry

By Xavier Pacheco

Class1

1

Figure 1: The S

12 March 1999 Delphi Informant
The Singleton Pattern
Implementing a Reusable Object for Saving Persistent Data

W e’re surrounded by patterns, both physical and behavioral. With the
exception of occasional acts of spontaneity, most people go about their

daily activities according to various behavioral patterns. Likewise, in software
development, many problems follow a common theme, and the majority of
these problems is solvable by applying object-oriented patterns. In a loose
sense, patterns are to object-oriented programming as algorithms are to struc-
tured programming.
Unlike our behavioral patterns, we can’t
depend on programming patterns to pop into
our heads automatically. First, we must fully
understand the problem at hand. Second, we
must be able to determine that there is a pat-
tern that addresses the problem. Finally, we
must implement a pattern that we’ve identi-
fied, modified, or created to solve the problem.

This is the first of a series of articles in which I
will discuss patterns. Throughout this series,
I’ll give practical examples to implement the
patterns I discuss. The examples I’ll illustrate
may vary from simple Object Pascal usage, to
more complex implementations of
COM/DCOM and CORBA. My goals are to:

introduce you to common patterns or
variations thereof,
present practical solutions to common
problems using patterns, and
promote a frame of thinking when trying
to solve common development problems.
TSingleton

Singleton

Class2 Class3

1 1

1 1

1

Return unique instance

ingleton class structure and its relations.
The Singleton Pattern
The Singleton pattern is a very simple pattern
to implement. It’s used when you want to
ensure that only one instance of a class exists.
Additionally, the Singleton pattern is globally
available throughout the application. Ideally, it
can be overridden to allow programmers to
extend the class without necessitating modifi-
cation to the client code. This last point is not
always practical, but ideal if possible. Figure 1
illustrates the structure of the Singleton class
and its relationship to other classes.

There are several scenarios in which you
might need to implement a Singleton pattern.
The most common is to encapsulate a partic-
ular set of data and/or behaviors so they’re
available as one instance. This will ensure the
data isn’t replicated elsewhere in the applica-
tion, and changed so it becomes invalid. For
example, you might want to ensure that an
opened file is accessible from only one loca-
tion within your application.

Some common examples of Singletons used in
the VCL are the TApplication and TScreen class-
es that exist in all Delphi applications. Others
include TPrinter and TClipboard. I’ll illustrate
how to implement a Singleton for encapsulat-
ing application-wide user configuration data.

Implementing a Singleton Pattern Class
The following list specifies the steps
required to implement a Singleton class:

Variable Purpose

FSingleton Private variable to refer to the
TSingleton instance. Client will not be
able to directly access this variable.

FExternalCreation Boolean to indicate if the client
directly called the TSingleton con-
structor. A True value indicates an
error. Client must use the defined
access function.

Figure 2: The variables declared in the implementation of the
TSingleton class.

Patterns in Practice
1) Define private variables to ensure proper initialization for
the Singleton class.

2) Define an access function that returns the Singleton instance.
This function shall create the instance if it’s not already creat-
ed. Otherwise, it will return the previously created instance.

3) Override constructor to test if the object has already
been created, or the constructor is called directly. If so,
raise an error.

4) Override the Singleton’s destructor to destroy a private
instance, and set the Singleton variable to nil.

In the following sections, I’ll demonstrate how to create a
skeleton Singleton class. Later, I’ll use this same skeleton to
solve a more practical problem.

Defining the internal private variables. Listing One (on page
16) presents a skeleton Singleton class, TSingleton (this and all
accompanying source code is available for download; see end of
article for details). Notice I’ve declared private variables in the
implementation section of this unit. The purpose of these vari-
ables is described in Figure 2.

Defining the access function. The access function for the
TSingleton class is defined as:

function Singleton: TSingleton;

This function evaluates FSingleton <> nil to determine
whether the class has already been instantiated. If the class
isn’t created, the function creates it; otherwise, it simply
returns the reference to FSingleton. Notice that before call-
ing the Create constructor for TSingleton, the function sets
the FExternalCreation variable to False. This is how I
enforce the rule that the client can’t directly call the
TSingleton constructor. Notice that the Create constructor
raises an exception if FExternalCreation is True — the
default value for this variable. Therefore, you’ll see that the
only way to access the TSingleton class is to call the
Singleton function.

Another, and possibly easier, approach would be to make the
constructor protected rather than public. I wanted to point
out both options, and, because the latter is easier, I won’t
illustrate it, other than to give it mention.

Notice that I’ve also provided an alternate access method, a
class method defined as:

class function Singleton: TSingleton;

This method simply calls the access function, Singleton. I cre-
ated this method to illustrate yet another technique for pro-
viding an access method.

Define constructor and destructor. As noted earlier, the con-
structor evaluates the private variable FExternalCreation, and
raises the appropriate exception. The destructor does the
reverse, and also sets the FSingleton variable to nil.
13 March 1999 Delphi Informant
The finalization section of this unit takes care of freeing the
TSingleton instance, if it hasn’t already been freed by checking if
FSingleton is not nil. FSingleton is set to nil in TSingleton.Destroy.

TSingleton Usage
Using TSingleton is simple; it’s used similarly to the way
you use the TPrinter and TClipboard classes. For example,
to invoke the TSingleton.ShowSingletonName method, sim-
ply refer to the access function as though it were the class,
which in effect it is, because it returns a reference to a
valid TSingleton instance:

Singleton.ShowSingletonName;

The first time the client makes a reference to the Singleton
function, the internal TSingleton instance is instantiated.
From this point, its existence will be present until the client
explicitly frees it, or until the application shuts down, at
which time the code in the finalization block is executed.

The client may also make reference using its own
TSingleton variable. This isn’t a problem because the
client’s variable and internal variable will be referring to
the same instance. Even if the client frees its own variable
reference, another call to Singleton will simply cause the
internal instance to be instantiated again. Therefore, the
following code fragments are valid, even though they don’t
follow good programming practices. I use them here to
make a point; I don’t really code like this:

var
S: TSingleton;

begin
S := TSingleton.Singleton;

S.ShowSingletonName;

end;

In the above code, not freeing the TSingleton instance is fine
because the finalization block will free it when the application
shuts down. The following code won’t fail:

var
S: TSingleton;

begin
S := Singleton;

S.Free;

Singleton.ShowSingletonName;

end;

Patterns in Practice
Although the call to S.Free destroys the internal FSingleton
instance, the subsequent call to Singleton.ShowSingletonName
recreates that instance. The same goes for this code:

begin
Singleton.Free;

Singleton.ShowSingletonName;

end;

Now that I’ve shown you a generic Singleton class, I’ll show
you a more practical use for this class.

Introduction to TUserConfiguration
I’ve worked on quite a number of projects involving user-
interface design, and one requirement consistently arises: per-
sistent user options. Although the options that end users
want to save may vary, the concept is almost always the same.
When users close their applications, some set of data is saved,
so the next time the application is launched, those same
options are remembered. In many cases, these options have to
do with security, e.g. the username, password, and perhaps a
list of accessible screens or routines. In other cases, it has to
do with the user interface; things such as the main screen
location and size might get saved along with other U/I fea-
tures, e.g. grid-column widths, pane sizes, fonts, etc.

There are many ways to implement this persistent data, and
because this is an article on Singleton classes, it seems fitting
to illustrate how to implement such an object using the
Singleton pattern. I prefer the Singleton solution because it
allows the client application’s modules to access this data with
the assurance that when the data is accessed and/or modified
from one module, every module realizes the same data.

Listing Two (beginning on page 16) illustrates a simple imple-
mentation of the TUserConfiguration class. Although it con-
tains quite a bit more code, it still follows the pattern shown
from the basic TSingleton skeleton, i.e. TUserConfiguration is
an extension of TSingleton. It contains four additional proper-
ties: UserName, Password, UserID, and MainScreenPos. The first
three properties are simple data types, and MainScreenPos is of
type TMainScreenPos, a TPersistent descendant. MainScreenPos
encapsulates four integer values into which I’ll store the bound-
aries for the main screen.

I defined TMainScreenPos as a class because I wanted to illustrate
how you can store data in a hierarchical manner by taking
advantage of Delphi’s streaming mechanism and RTTI (run-
time type information). Basically, I’m using the same system that
stores your TForm properties when creating applications in
Delphi. All TPersistent classes are streamable. The details of
RTTI are beyond the scope of this article, but I’ll briefly summa-
rize where I use RTTI functionality in the TUserConfiguration
class. (If you’re interested in a more detailed discussion of RTTI,
visit my Web site at http://www.xapware.com.)

Making TUserConfiguration Persistent
The intent of the TUserConfiguration class is to save data to some
14 March 1999 Delphi Informant
type of store. As stated earlier, the TUserConfiguration class sim-
plifies this by using the functionality provided by Delphi’s stream-
ing system and RTTI. Data is made streamable by encapsulating
it as published properties of a TPersistent class descendant.

The TStorage class handles the actual saving of the data.
TStorage is an abstract class. Two of its descendants,
TStorageCfg and TStorageReg, store the data in a configuration
file and system registry, respectively. TUserConfiguration uses
the TStorage class to save/read user-configuration data.
TUserConfiguration calls FStorage.SaveUserConf to save the
data, and FStorage.ReadUserConf to read it. TUserConfiguration
doesn’t know the type of storage data is saved to, or read from;
it only knows that it uses the two abstract methods of the
TStorage class. It’s the responsibility of the TStorage descendants
to implement the saving and reading of data. (This brings up
the topics of generalization and composition; please see my dis-
cussion on these issues at the end of this article.)

TStorage defines two abstract methods: SaveUserConf and
ReadUserConf. The SaveUserConf method is responsible for
saving the user configuration information; the ReadUserConf
method is responsible for retrieving the information back
into the TUserConfiguration object.

Saving to a file. The TStorageCfg class implements the
TStorage abstract methods to save and read data to and from a
separate configuration file. We’ll handle this by using a
TFileStream object. TStorageCfg.SaveUserConf saves the data
contained by TUserConfiguration to a file. In
TStorageCfg.SaveUserConf, the TFileStream.WriteComponent
method writes a component and its streamable properties to
the file created by the TFileStream.Create constructor. Because
TUserConfiguration is a TComponent descendant, its published
data, including other objects and their published data, get
stored to the file. TStorageCfg.ReadComponent does exactly the
opposite by calling TFileStream.ReadComponent from the file.

Saving to the registry. The TStorageReg class is another
implementation of TStorage that allows data to be saved to
the registry. TStorageReg defines the field FRegKey that holds
the location in the registry.

At first glance, the abstract methods for TStorageReg seem
quite simple, as they both call a single procedure. The
TStorageReg.ReadUserConf method calls RegToComponentProps,
whereas TStorageReg.SaveUserConf calls ComponentPropsToReg.
The two procedures are utilities I’ve written to save and read a
component and its properties (including other objects) to and
from the registry. They are defined in the unit XWRegUtils.pas
shown in Listing Three, beginning on page 18.

Notice that both procedures, ComponentPropsToReg and
RegToComponentProps, make use of an internal procedure,
ProcessProps. Because the reading and writing of this data is
practically identical, I put it into a single procedure, and used a
Boolean parameter, AReadProps, to distinguish save and read
operations. This procedure walks through the published

http://www.xapware.com

Figure 3: Streamed data in the system registry.

AbstractClass

TemplateMethod
Primitive Method1
PrimitiveMethod2

Primitive Method1

PrimitiveMethod2

ConcreteClassA

PrimitiveMethod1
PrimitiveMethod2

ConcreteClassB

PrimitiveMethod1
PrimitiveMethod2

Figure 4: TUserConfiguration based on the inheritance model.

Patterns in Practice
(streamable) properties of a component, and writes them to the
registry. It also cleverly calls itself recursively to write published
objects to the registry in the same hierarchical fashion shown
in Figure 3. I won’t get into the details of how this procedure
works, because it has to do with RTTI and streaming. For
now, you may be content in knowing that it’s very impressive.

TUserConfiguration Miscellany
The rest of the code contained in the UserCfg.pas unit has to
do with the housekeeping of the TUserConfiguration class. As
you might expect, you’ll see code that creates and frees any
internal classes accordingly, and initializes internal variables.

Take note of the TUserConfiguration.CreateStorage method.
This method creates the proper TStorage descendant, based
on the value of TUserConfiguration.FStorageType.
CreateStorage is called from TUserConfiguration, the Create
constructor, and the setter method for the StorageType
property, SetStorageType.

Using the TUserConfiguration object is simple. Listing
Four (beginning on page 19) illustrates how to retrieve the
user data in the OnCreate event handler for the main
form, and how to save this information in the OnClose
event handler. The OnChange event handlers for two
TEdit components on the form change the UserName and
Password properties for TUserConfiguration.

Generalization or Composition
Earlier, while discussing how the TUserConfiguration class
worked with the TStorage class, I mentioned the issues of
generalization and composition, two methods of reusability
in object-oriented programming. I’m not going to get into
the details of these concepts here. You may visit my Web site
for further discussions on basic OOP concepts. My imple-
mentation of TUserConfiguration is based on composition. I’ll
explain why I chose composition over generalization.

Generalization is the same as inheritance. Had I implemented
TUserConfiguration using strictly inheritance, it might have
looked like the example shown in Figure 4. In the inheritance
model, descendant classes take on the characteristics of their
ancestor classes. Consequently, these descendant classes typi-
cally have some, if not much, visibility into the ancestor
15 March 1999 Delphi Informant
classes’ internal methods and elements. The book
Design Patterns: Elements of Reusable Object-
Oriented Software [Addison-Wesley, 1994] by Erich
Gamma, et al. describes the inheritance model as
“white-box reuse.” By the way, if there is any single
book that should be read in regards to design pat-
terns, this is the one. Although it’s not specific to
Delphi, it gives an in-depth rundown of patterns as
they might be implemented in any language.

The inheritance model has its advantages. It allows
reuse by letting descendant classes take from the
functionality of the ancestor class. Descendant class-
es are used to create “specialized” versions of the

ancestor. In TUserConfiguration, for example, each descendant
would need to override only the methods required for saving
and reading data to and from its specific store.

There are two problems with the inheritance model. The first
is that the class implementation used by the client is decided
upon at compile time. This isn’t a major problem because it’s
possible to have the client refer to the ancestor rather than a
specific descendant. For example, TUserConfiguration might
have two abstract methods for saving and reading data
that descendants would need to override. Clients would
code to TUserConfiguration directly. At some point, the
client application would still have to instantiate a special-
ized version of the ancestor.

The second, and more serious, problem has to do with the
exposure of the ancestor class to its descendants. Because
methods and internal fields are typically exposed to descen-
dant classes, it’s difficult to change the implementation of the
parent class without forcing modifications to be made to its
descendants. This is typical in cases where the descendant
class makes direct references to methods and fields of the par-
ent class’ private/protected members.

By using the composition model, the specialized functionali-
ty is delegated to an entirely separate class. As with the
TUserConfiguration class, I’ve delegated the saving and
retrieving of data to the TStorage class. TUserConfiguration
refers to the interface defined for TStorage. I use the term
“interface” loosely here. This isn’t the same as an interface
when dealing with COM; however, it’s similar. This model

Patterns in Practice
more accurately incorporates reusability. Objects deal with
each other at the interface level. As long as you never change
the interface, objects are self-contained, and the dependen-
cies between classes are minimized. It becomes much easier
to change the implementation of classes without necessitat-
ing change to other classes used in the system. Additionally,
client applications don’t need to know anything about the
TStorage class. It just cares that TUserConfiguration can save
and read data from a specified store.

When using a composition model, you typically code to
interfaces. This requires that you design your classes cau-
tiously, because the interface of a class serves as a “contract”
between it and other classes. In the next installment in this
series, I’ll use this model to design an application frame-
work. You’ll be able to add modules to a shell application
without having to recompile it.

Conclusion
We’ve discussed a practical use for the Singleton pattern by
illustrating a global user configuration object. We’ll be dis-
cussing more patterns and presenting real-world uses for
them. Programming patterns can consistently save you time;
rather than trying to figure out how to solve a particular
problem, the solution may already be at hand in a pattern.
(I would like to thank Anne Pacheco and Steve Teixeira for
proofing this and many of my articles.) ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\99\MAR\DI9903XP.

Xavier Pacheco is president and chief consultant for Xapware Technologies Inc.,
where he provides enterprise-level consulting services and training. He is also the
co-author of Delphi 4 Developer’s Guide [SAMS Publishing, 1998]. You can write
Xavier at xavier@xapware.com, or visit his Web site at
http://www.xapware.com.
Begin Listing One — Snglton.pas
unit Snglton;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs;

type
// TSingleton class definition.
TSingleton = class(TComponent)
public

constructor Create(AOwner: TComponent); override;
destructor Destroy; override;
// Class function entry point.
class function Singleton: TSingleton;

procedure ShowSingletonName;

end;
16 March 1999 Delphi Informant
// Function entry point.
function Singleton: TSingleton;

implementation

var
// Private class variable.
FSingleton: TSingleton = nil;
// Boolean valid creation indicator.
FExternalCreation: Boolean = True;

// TSingleton.
constructor TSingleton.Create(AOwner: TComponent);

begin
// Test if object has already been created.
if FSingleton <> nil then

raise Exception.Create(

'Singleton class already initialized.');

// Test if constructor was called external to the
// Singleton() function.
if FExternalCreation then

raise Exception.Create(

'Call Singleton function to reference this class.');

inherited Create(AOwner);

end;

destructor TSingleton.Destroy;

begin
// Set the private variable to nil.
FSingleton := nil;
inherited Destroy;

end;

procedure TSingleton.ShowSingletonName;

begin
ShowMessage(ClassName);

end;

class function TSingleton.Singleton: TSingleton;

begin
Result := Snglton.Singleton;

end;

function Singleton: TSingleton;

begin
if FSingleton = nil then begin

FExternalCreation := False;

try
FSingleton := TSingleton.Create(nil);

finally
FExternalCreation := True;

end;
end;
Result := FSingleton;

end;
initialization

finalization
// Free the global object, only if not freed previously.
if FSingleton <> nil then

FSingleton.Free;

end.

End Listing One
Begin Listing Two — UserCfg.pas
unit UserCfg;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs;

http://www.xapware.com

Patterns in Practice
type
// Forward declarations.
TStorage = class;
TMainScreenPos = class;
TStorageType = (stConfigFile, stRegistry);

// TUserConfiguration.
TUserConfiguration = class(TComponent)
private

FStorage: TStorage;

FUserName: string;
FPassword: string;
FUserID: Integer;

FStorageType: TStorageType;

FMainScreenPos: TMainScreenPos;

procedure SetMainScreenPos(

const Value: TMainScreenPos);

protected
procedure SetPassword(const Value: string);
procedure SetUserName(const Value: string);
procedure SetUserID(const Value: Integer);

procedure SetStorageType(const Value: TStorageType);

procedure CreateStorage; virtual;
public

constructor Create(AOwner: TComponent;

const AStorageType: TStorageType);

destructor Destroy; override;
procedure SaveUserConf;

procedure ReadUserConf;

property StorageType: TStorageType

read FStorageType write SetStorageType;

class function UserConfiguration: TUserConfiguration;

published
property UserName: string
read FUserName write SetUserName;

property Password: string
read FPassword write SetPassword;

property UserID: Integer read FUserID write SetUserID;

property MainScreenPos: TMainScreenPos

read FMainScreenPos write SetMainScreenPos;

end;

// Base storage class.
TStorage = class(TObject)
private

procedure SaveUserConf(AUserConfiguration:

TUserConfiguration); virtual; abstract;
function ReadUserConf(AUserConfiguration:

TUserConfiguration): Boolean; virtual; abstract;
end;

// Configuration file storage.
TStorageCfg = class(TStorage)

procedure SaveUserConf(AUserConfiguration:

TUserConfiguration); override;
function ReadUserConf(AUserConfiguration:

TUserConfiguration): Boolean; override;
end;

// Configuration file storage.
TStorageReg = class(TStorage)

FRegKey: string;
constructor Create;

procedure SaveUserConf(AUserConfiguration:

TUserConfiguration); override;
function ReadUserConf(AUserConfiguration:

TUserConfiguration): Boolean; override;
end;

// TMainScreenPos.
TMainScreenPos = class(TPersistent)
private

FHeight: Integer;

FTop: Integer;

FLeft: Integer;

FWidth: Integer;
17 March 1999 Delphi Informant
protected
procedure SetHeight(const Value: Integer);

procedure SetLeft(const Value: Integer);

procedure SetTop(const Value: Integer);

procedure SetWidth(const Value: Integer);

published
property Left: Integer read FLeft write SetLeft;

property Top: Integer read FTop write SetTop;

property Width: Integer read FWidth write SetWidth;

property Height: Integer read FHeight write SetHeight;

end;

function UserConfiguration: TUserConfiguration;

implementation

uses
XWRegUtils;

var
FUserConfiguration: TUserConfiguration = nil;
FExternalCreation: Boolean = True;

function RemoveExt(const AFileName: string): string;
begin

Result := Copy(AFileName, 1, Pos('.', AFileName)-1);

end;

function UserConfiguration: TUserConfiguration;

begin
if FUserConfiguration = nil then begin

FExternalCreation := False;

try
FUserConfiguration :=

TUserConfiguration.Create(nil, stConfigFile);
finally

FExternalCreation := True;

end;
end;
Result := FUserConfiguration;

end;

// TUserConfiguration.
constructor TUserConfiguration.Create(AOwner: TComponent;

const AStorageType: TStorageType);

begin
if FUserConfiguration <> nil then

raise Exception.Create(

'UserConfiguration already initialized.');

if FExternalCreation then
raise Exception.Create(

'Call UserConfiguration to reference this class.');

inherited Create(AOwner);

FMainScreenPos := TMainScreenPos.Create;

FStorageType := AStorageType;

CreateStorage;

ReadUserConf;

end;

destructor TUserConfiguration.Destroy;

begin
// Save the setting to storage.
SaveUserConf;

FStorage.Free;

FMainScreenPos.Free;

FUserConfiguration := nil;
inherited Destroy;

end;

procedure TUserConfiguration.CreateStorage;

begin
if FStorage <> nil then

FStorage.Free;

case FStorageType of
stConfigFile: FStorage := TStorageCfg.Create;

stRegistry: FStorage := TStorageReg.Create;

end;

Patterns in Practice
end;

procedure TUserConfiguration.ReadUserConf;

begin
if not FStorage.ReadUserConf(self) then begin

FUserName := EmptyStr;

FPassword := EmptyStr;

end;
end;

procedure TUserConfiguration.SaveUserConf;

begin
FStorage.SaveUserConf(self);

end;

procedure TUserConfiguration.SetMainScreenPos(

const Value: TMainScreenPos);

begin
FMainScreenPos := Value;

end;

procedure TUserConfiguration.SetPassword(

const Value: string);
begin

FPassword := Value;

end;

procedure TUserConfiguration.SetStorageType(

const Value: TStorageType);

begin
FStorageType := Value;

CreateStorage;

ReadUserConf; // If the storage exists, read it.
end;

procedure TUserConfiguration.SetUserID(

const Value: Integer);

begin
FUserID := Value;

end;

procedure TUserConfiguration.SetUserName(

const Value: string);
begin

FUserName := Value;

end;

class function TUserConfiguration.UserConfiguration:

TUserConfiguration;

begin
Result := UserCfg.UserConfiguration;

end;

// TStorageCfg.
function TStorageCfg.ReadUserConf(AUserConfiguration:

TUserConfiguration): Boolean;

var
FileStream: TFileStream;

FName: string;
begin

Result := False;

FName := ChangeFileExt(Application.ExeName, '.dat');

if FileExists(FName) then begin
FileStream := TFileStream.Create(FName, fmOpenRead);

try
FileStream.ReadComponent(AUserConfiguration);

Result := True;

finally
FileStream.Free;

end;
end;

end;

procedure TStorageCfg.SaveUserConf(AUserConfiguration:

TUserConfiguration);

var
FileStream: TFileStream;
18 March 1999 Delphi Informant
FName: string;
begin

FName := ChangeFileExt(Application.ExeName, '.dat');

FileStream := TFileStream.Create(FName, fmCreate);

try
FileStream.WriteComponent(AUserConfiguration);

finally
FileStream.Free;

end;
end;

// TStorageReg.
constructor TStorageReg.Create;

begin
inherited;
FRegKey := 'Software\' +

RemoveExt(ExtractFileName(Application.ExeName));

end;

function TStorageReg.ReadUserConf(

AUserConfiguration: TUserConfiguration): Boolean;

begin
RegToComponentProps(FRegKey, AUserConfiguration);

Result := True;

end;

procedure TStorageReg.SaveUserConf(

AUserConfiguration: TUserConfiguration);

begin
ComponentPropsToReg(AUserConfiguration, FRegKey);

end;

// TMainScreenPos.
procedure TMainScreenPos.SetHeight(const Value: Integer);

begin
FHeight := Value;

end;

procedure TMainScreenPos.SetLeft(const Value: Integer);

begin
FLeft := Value;

end;

procedure TMainScreenPos.SetTop(const Value: Integer);

begin
FTop := Value;

end;

procedure TMainScreenPos.SetWidth(const Value: Integer);

begin
FWidth := Value;

end;

initialization

finalization
// Free the global object, only if not freed previously.
if FUserConfiguration <> nil then

FUserConfiguration.Free;

end.

End Listing Two
Begin Listing Three — XWRegUtils.pas
unit XWRegUtils;

interface

uses Classes;

// Saves the component specified by AComponent and its
// properties to the system registry in the location
// specified by AregKey.
procedure ComponentPropsToReg(AComponent: TComponent;

const ARegKey: string);

Patterns in Practice
// Reads the component properties for the component
// specified by AComponent from the system registry at the
// location specified by AregKey.
procedure RegToComponentProps(const ARegKey: string;

AComponent: TComponent);

implementation

uses TypInfo, Registry, SysUtils;

procedure ProcessProps(AObject: TObject;

const ARegSection: string; AReadProps: Boolean;
ARegIni: TRegIniFile);

var
PropList: PPropList;

TypeData: PTypeData;

i: Integer;

PropName: string;
TempObject: TObject;

begin
TypeData := GetTypeData(AObject.ClassInfo);

if TypeData.PropCount <> 0 then begin
GetMem(PropList, SizeOf(PPropInfo)*TypeData.PropCount);

try
GetPropInfos(AObject.ClassInfo, PropList);

for i := 0 to TypeData.PropCount - 1 do begin
PropName := PropList[i]^.Name;

// Filter out published properties of TComponent.
if not ((PropName = 'Name') or

(PropName = 'Tag')) then
begin
// For now, only process integers, strings, and
// other objects.
if AReadProps then
case PropList[i]^.PropType^.Kind of
tkInteger:

SetOrdProp(AObject, PropList[i],

ARegIni.ReadInteger(ARegSection,

PropName, 0));

tkString, tkLString:

SetStrProp(AObject, PropList[i],

ARegIni.ReadString(ARegSection,

PropName, EmptyStr));

tkClass: begin
TempObject := TObject(GetOrdProp(

AObject, PropList[i]));

ProcessProps(TempObject, PropName,

True, ARegIni);

end;
end

else
case PropList[i]^.PropType^.Kind of
tkInteger:

ARegIni.WriteInteger(ARegSection,

PropName, GetOrdProp(AObject,

PropList[i]));

tkString, tkLString:

ARegIni.WriteString(ARegSection,PropName,

GetStrProp(AObject, PropList[i]));

tkClass: begin
TempObject := TObject(GetOrdProp(AObject,

PropList[i]));

ProcessProps(TempObject, PropName, False,

ARegIni);

end;
end

end;
end;

finally
FreeMem(PropList,

SizeOf(PPropInfo) * TypeData.PropCount);

end;
end;

end;

procedure ComponentPropsToReg(AComponent: TComponent;
19 March 1999 Delphi Informant
const ARegKey: string);
var

RegIni: TRegIniFile;

begin
RegIni := TRegIniFile.Create(ARegKey);

try
ProcessProps(AComponent, EmptyStr, False, RegIni);

finally
RegIni.Free;

end;
end;

procedure RegToComponentProps(const ARegKey: string;
AComponent: TComponent);

var
RegIni: TRegIniFile;

begin
RegIni := TRegIniFile.Create(ARegKey);

try
ProcessProps(AComponent, EmptyStr, True, RegIni);

finally
RegIni.Free;

end;
end;

end.

End Listing Three
Begin Listing Four — MainFrm.pas
unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,

Forms, Dialogs, StdCtrls;

type
TMainForm = class(TForm)

edtUserName: TEdit;

edtPassword: TEdit;

lblUserName: TLabel;

lblPassword: TLabel;

procedure FormClose(Sender: TObject;

var Action: TCloseAction);

procedure FormCreate(Sender: TObject);

procedure edtUserNameChange(Sender: TObject);

procedure edtPasswordChange(Sender: TObject);

end;

var
MainForm: TMainForm;

implementation

uses UserCfg;

{$R *.DFM}

procedure TMainForm.FormCreate(Sender: TObject);

begin
with UserConfiguration do begin

// Change the storage location to the system registry.
StorageType := stRegistry;

if not ((MainScreenPos.Width = 0) or
(MainScreenPos.Height = 0)) then

SetBounds(MainScreenPos.Left, MainScreenPos.Top,

MainScreenPos.Width, MainScreenPos.Height);

edtUserName.Text := UserName;

edtPassword.Text := Password;

end;
end;

procedure TMainForm.FormClose(Sender: TObject;

Patterns in Practice
var Action: TCloseAction);

begin
with UserConfiguration do begin

MainScreenPos.Left := Left;

MainScreenPos.Top := Top;

MainScreenPos.Width := Width;

MainScreenPos.Height := Height;

end;
end;

procedure TMainForm.edtUserNameChange(Sender: TObject);

begin
UserConfiguration.UserName := edtUserName.Text;

end;

procedure TMainForm.edtPasswordChange(Sender: TObject);

begin
UserConfiguration.Password := edtPassword.Text;

end;

end.

End Listing Four
20 March 1999 Delphi Informant

21 March 1999 Delphi Informant

Multi-Tier
Delphi Enterprise / MIDAS / Multi-tier Architecture

By Bill Todd
The Briefcase Model
When Your Application Must Travel Well

One of the benefits of using the MIDAS multi-tier application architecture is
the ability to build briefcase-model applications. A briefcase-model appli-

cation is a multi-tier application that allows the user of the client applica-
tion to save a set of records in local files, disconnect from the network that
hosts the application server and database, and edit the data off-line. Later,
the user reconnects to the network, and applies any accumulated updates
to the database.
There are two architectures that can form the
basis for a briefcase-model application. The
first is the classic multi-tier application,
where the client application runs on one
machine. The application server (the middle
tier) runs on another machine on the net-
work, and the database server runs on yet
another machine. In this case, a MIDAS
license is required. In a briefcase application,
when the client application starts, it must
determine if the application server is avail-
able. The easy way to see if the server is avail-
able is to set the Connected property of the
connection component in the client applica-
tion to True. If the server isn’t available, an
exception is raised.

One of the nice things about the MIDAS
licensing requirements is that you can build
briefcase-model applications without having
to purchase a MIDAS license. As long as the
client application and the application server
that provides its data run on the same
machine, no license is required.

This architecture complicates a briefcase
application because the application server is
always available. Starting the client when not
connected to the network will cause the
application server to start, but the server
won’t be able to connect to the database.
There are two ways to handle this situation.
The server can attempt to connect to the
database, and, if it fails, can notify the client
that the database isn’t available. This is by far
the more complex solution, because the client
will have to call a custom method on the
server to determine if the database is avail-
able, and, if it isn’t, modify its behavior to
work with local data, even though the appli-
cation server is running.

A much simpler approach is to assume the
user knows whether she or he is connected
to the network, and provide two icons to
start the client application. One icon is
used when connected to the network, and
the other when not connected. The icon
that starts the client when the network isn’t
available can include a command-line para-
meter that tells the client to run in brief-
case mode.

A Sample Application
The sample application accompanying this
article (see Figure 1) demonstrates these
techniques. (The client and server projects
discussed in this article are available for
download; see end of article for details.) To
run the sample application, compile and
run the EbSrvr server first, so it will register
itself as an Automation server.

Figure 1: The demonstration client and server application at
run time.

Multi-Tier

...

{ Try to connect to the server. }
ConnectToServer;

with MainDm do begin
{ If the server is not available, and there is no local

data to load, notify the user and terminate. }
if (LoadLocalData = False) and

(IsConnected = False) then begin
MessageDlg('There is no data available.',

mtInformation, [mbOK], 0);

Application.Terminate;

Exit;

end; // if
{ Open the client datasets. }
CustomerCds.Open;

OrderCds.Open;

...

Figure 2: Determining if the server is available.

{ If the -L command-line parameter is not present, try to
connect to the application server. If the connection
succeeds, set the global variable IsConnected to True. }

procedure TEcMainForm.ConnectToServer;

begin
{ If the local command-line parameter is present,

don't try to connect to the server. }
if ParamCount > 0 then

if UpperCase(ParamStr(1)) = '-L' then begin
DisableServerFeatures;

Exit;

end; // if
{ Try to connect to the server. If the connection

is established, set IsConnected to True; }
with MainDm do
try
EbConn.Connected := True;

IsConnected := True;

except
DisableServerFeatures;

Exit;

end; // try
{ If the server is available, see if the database is.

If not, shut down the server. }
with MainDm do
if not EbConn.AppServer.IsDatabase then begin
IsConnected := False;

EbConn.Connected := False;

end; // if
end;

Figure 3: The ConnectToServer method.
Saving Data
The first requirement of a briefcase client application is the
ability to save the data that will be used off-line in local files.
The SaveToFile method of TClientDataSet provides this abili-
ty. The following code is from the Save To Local Drive menu
choice’s OnClick event handler:

procedure TEcMainForm.SaveLocally1Click(Sender: TObject);

begin
with MainDm do begin
CustomerCds.SaveToFile(CustomerFileName);

OrderCds.SaveToFile(OrderFileName);

AllOrdersCds.SaveToFile(AllOrderFileName);

end;
end;

This code calls the SaveToFile method of each of the client
dataset components in the program’s data module.
SaveToFile’s parameter is the name of the file to which to
save the data. The file can have any name and file extension
you choose. In this case, the file names are defined as global
constants in the implementation section of the main form’s
unit, so they can be easily changed if necessary.
22 March 1999 Delphi Informant
Calling SaveToFile saves both the Data and Delta properties
of the TClientDataSet. That is, both the data and the changes
that have been made — but not applied to the database —
are saved. This allows you to edit off-line and resave the origi-
nal data and unapplied changes as many times as you wish.

Starting the Client
When the client starts, it must determine if the server is avail-
able. This is handled in the main form’s OnCreate event han-
dler, part of which is shown in Figure 2. This code must deal
with three possible conditions upon application startup:
1) Local data is available.
2) Local data is not available, but the application server is

available.
3) Neither local nor server data is available.

If local data is available, it must be loaded. If the application
server is available, a connection to it must be established. If
no data was loaded from local files, data will be fetched from
the server automatically when the client datasets are opened.
If no data is available from local files or the server, the user
must be warned, and the application terminated.

The code in the OnCreate event handler begins by calling the
ConnectToServer method, shown in Figure 3. The main form’s
unit includes a global variable, IsConnected, which is initial-
ized to False. The method then sets that variable to True if a
connection can be established to the application server.

The ConnectToServer method begins by checking if any
command-line parameters are present. If so, it checks if
the first parameter is -L. If the -L parameter is present,

Multi-Tier

{ Try to load local data files. If they exist,
return True; otherwise, return False; }

function TEcmainForm.LoadLocalData: Boolean;

begin
Result := False;

with MainDm do begin
{ If local files exist, load them. }
if FileExists(CustomerFileName) then begin

CustomerCds.LoadFromFile(CustomerFileName);

Result := True;

end; // if
if FileExists(OrderFileName) then

OrderCds.LoadFromFile(OrderFileName);

if FileExists(AllOrderFileName) then
AllOrdersCds.LoadFromFile(AllOrderFileName);

end; // with
end;

Figure 4: The LoadLocalData method.

procedure TEcMainForm.ApplyChanges1Click(Sender: TObject);

begin
with MainDm do begin

with CustomerCds do begin
{ If there is an unposted record, post it. }
if State in [dsEdit, dsInsert] then
Post;

{ If there are changes, apply them. If the changes
are applied successfully, refresh. }

if ChangeCount > 0 then
if ApplyUpdates(ChangeCount) = 0 then

Refresh;

end; // with CustomerCds
with OrderCds do begin
{ If there is an unposted record, post it. }
if State in [dsEdit, dsInsert] then

Post;

{ If there are changes, apply them. If the changes
are applied successfully, refresh. }

if ChangeCount > 0 then
if ApplyUpdates(ChangeCount) = 0 then

Refresh;

end; // with OrderCds
end; // with MainDm
{ If local files exist, delete them now that the updates

have been applied. }
if FileExists(CustomerFileName) then

DeleteFile(CustomerFileName);

if FileExists(OrderFileName) then
DeleteFile(OrderFileName);

if FileExists(AllOrderFileName) then
DeleteFile(AllOrderFileName);

end;

Figure 5: Applying updates and deleting the local files.
DisableServerFeatures is called, and this method exits, leav-
ing IsConnected set to its default value of False. If the -L
command-line parameter isn’t present, the TDCOMConnection
component’s Connected property is set to True inside a
try..except block. If the server can’t be started, an excep-
tion will occur. If the connection is established, the
IsConnected variable is set to True. If the connection fails,
IsConnected retains its default value of False, and
DisableServerFeatures is called.

If a connection to the application server is established, the
application server’s IsDatabase method is called. This method
attempts to set the Connected property of the server’s
TDatabase component to True. If the connection succeeds,
IsDatabase returns True; otherwise, it returns False. If the
database isn’t available, the application server is closed, and
IsConnected is set back to False.

The DisableServerFeatures method:

{ Disable features that are only available when
connected to the application server. }

procedure TEcMainForm.DisableServerFeatures;

begin
View1.Enabled := False;

ApplyChanges1.Enabled := False;

FilterStringLabel.Visible := False;

FilterLabel.Visible := False;

end;

takes care of disabling features of the client application that
won’t work if the application server isn’t running. In this
application, there are four features that must be disabled:

The first is the View menu choice, which allows the client
to set a filter on the server that displays all customers, or
only customers in the US.
The second is the Apply Changes choice on the File menu,
which calls ApplyUpdates for each of the client datasets.
The third is the FilterStringLabel component, which
shows the filter expression on the server. While this
expression could still be displayed (because it’s includ-
ed in the data packets), there’s no way to know if the
filter was enabled at the time the data was saved to the
local files.
23 March 1999 Delphi Informant
Fourth is the FilterLabel component, which shows
whether the filter on the server is currently enabled on
the server. This is set by a callback from the server, and
isn’t available without the server.

The next block of code in the main form’s OnCreate event
handler attempts to load any data in local files by calling
the LoadLocalData method, shown in Figure 4. This
method returns True if local data is found. The method
also checks if each file exists, and if so, calls the corre-
sponding client dataset’s LoadFromFile method to load the
data. In this application, there is no way to save order data
without saving customer data, so the return value is set to
True if the local customer file is found.

Reconnecting
There is one more alteration to the client required in a
briefcase-model application. When the user reconnects to
the network after making off-line changes, and applies
those changes to the database, the local files remain. The
next time the client is started, it will reload the same local
data and changes. To prevent this, the code for the Apply

Changes menu choice is changed to delete the local files
after updates are applied successfully (see Figure 5).

In Case They Forget ...
There’s one more change that’s not required (except perhaps
to the client). It’s possible the user could make changes off-
line and forget to save them before closing the program. To

Multi-Tier
prevent this, save the files in the main form’s OnClose event
handler, as shown here:

procedure TEcMainForm.FormClose(Sender: TObject;

var Action: TCloseAction);

begin
if not IsConnected then

SaveLocally1Click(Self);

end;

Of course, there’s more to any briefcase-model applica-
tion. Please give the sample application a spin, and study
it, before creating your own briefcase solutions. ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\99\MAR\DI9903BT.

Bill Todd is president of The Database Group, Inc., a database consulting and
development firm based near Phoenix. He is a Contributing Editor of Delphi
Informant, co-author of four database-programming books, author of over 60
articles, and a member of Team Borland, providing technical support on the
Inprise Internet newsgroups. He is a frequent speaker at Inprise conferences in
the US and Europe. Bill is also a nationally known trainer and has taught
Paradox and Delphi programming classes across the country and overseas. He
was an instructor on the 1995, 1996, and 1997 Borland/Softbite Delphi World
Tours. He can be reached at bill@dbginc.com or (602) 802-0178.
24 March 1999 Delphi Informant

25 March 1999 Delphi Informant

Undocumented
Win32 API / Delphi 3

By Kevin J. Bluck and James Holderness
Shell Notifications
Getting Windows to Share Some of Its Secrets

You may have stumbled across the Windows API function SHChangeNotify.
According to the Windows docs, it notifies the system of any events that

may affect the shell. Well, that’s very nice for the shell. There are many inter-
esting events the system monitors: file and directory changes, media insertion
and removal, disk free-space updates, etc. For example, you’re probably famil-
iar with having Windows Explorer update the CD drive’s icon when you insert
or remove a CD. That’s an instance of shell notifications at work. Very useful,
but wouldn’t it be nice if you could see those notifications as well?
Until now, tapping into this mechanism
required insider knowledge. For some reason,
Microsoft decided not to reveal the methods
by which Windows Explorer receives these
notifications. This article exposes those
secrets, and provides a nifty component to
give you a head start in using this exciting
technique the Delphi way.

A Brief Digression
Before getting wrapped up in the details of
signing up for shell notification, you need to
know just a little bit about the PItemIDList
record type. This is a type defined in the stan-
dard ShlObj unit, and refers to the construct
known to shell programmers as a PIDL (pro-
nounced “piddle”). The nature of PIDLs is a
broad topic, more than enough to occupy its
own article. For the purposes of shell notifica-
tions, however, a deep exposure isn’t necessary.

Basically, a PIDL is the shell version of the
DOS path. If you look at the folder tree in
the left pane of Windows Explorer, you can
see all the file system folders. You can also see
folders that aren’t part of the file system, such
as Control Panel. Some means was necessary
to identify all folders uniquely, whether they
were part of the file system or not.
Microsoft’s solution was the PIDL, a sort of
turbo-charged path. It’s not a simple string;
rather, it’s a pointer to a chain of structures
that contain identifying information for a
given folder. The contents of a PIDL are
largely opaque; they weren’t intended for
direct display or manipulation.

One tricky aspect of PIDLs is that they must
often be allocated in one module, and freed in
a module written by a different party. This can
be problematic, as different development envi-
ronments often use different memory alloca-
tion schemes. For example, using Delphi’s
FreeMem procedure to free memory originally
allocated by some C compiler’s malloc RTL
function would most likely end up corrupting
the heap. As a result, the memory buffers to
contain PIDLs must be allocated and freed by
the shell task allocator. This ensures the PIDL’s
memory will always be allocated and freed
using the same scheme, regardless of the devel-
opment environment used for the module.
This functionality is implemented through a
COM interface named IMalloc. Using any-
thing but this global allocation engine to allo-
cate and free PIDLs is a quick route to an
abnormal termination. You can use the
IMalloc interface directly for this, but we have
opted instead to use some “cheater” functions,
which you’ll find defined in the kbsnPIDL
unit in the sample files included with this arti-
cle. (All source in this article is available for
download; see end of article for details.)

The upshot of all this is that every file system
object can be represented either as a PIDL or
a path. In addition, many non-file system
objects also exist that can’t be identified by

Undocumented

Constants associated with single events

SHCNE_ASSOCCHANGED A file-type association has changed.
SHCNE_ATTRIBUTES The attributes of an item or folder have changed.
SHCNE_CREATE A non-folder item has been created.
SHCNE_DELETE A non-folder item has been deleted.
SHCNE_DRIVEADD A drive has been added.
SHCNE_DRIVEADDGUI A drive has been added via the shell.
SHCNE_DRIVEREMOVED A drive has been removed.
SHCNE_EXTENDED_EVENT Not currently used.
SHCNE_FREESPACE The amount of free space on a drive has changed.
SHCNE_MEDIAINSERTED Storage media has been inserted into a drive.
SHCNE_MEDIAREMOVED Storage media has been removed from a drive.
SHCNE_MKDIR A folder has been created.
SHCNE_NETSHARE A folder on the local computer is being shared via the network.
SHCNE_NETUNSHARE A folder on the local computer is no longer being shared via the network.
SHCNE_RENAMEFOLDER The name of a folder has changed.
SHCNE_RENAMEITEM The name of a non-folder item has changed.
SHCNE_RMDIR A folder has been removed.
SHCNE_SERVERDISCONNECT The computer has disconnected from a server.
SHCNE_UPDATEDIR The contents of an existing folder changed, but the folder wasn’t renamed.
SHCNE_UPDATEIMAGE An image from the system image list has changed.
SHCNE_UPDATEITEM An existing non-folder item changed, but the item wasn’t renamed.
Constants that combine multiple event types

SHCNE_ALLEVENTS Specifies a combination of all possible event identifiers.
SHCNE_DISKEVENTS Specifies a combination of all of the disk event identifiers.
SHCNE_GLOBALEVENT Specifies a combination of all of the global event identifiers.
Flag used with event constants

SHCNE_INTERRUPT The event occurred as a result of a system interrupt.

Figure 1: Shell event constants.

Flag Value

SHCNF_ACCEPT_INTERRUPTS $0001
SHCNF_ACCEPT_NON_INTERRUPTS $0002
SHCNF_NO_PROXY $8000

Figure 2: SHChangeNotifyRegister flags.
anything but a PIDL. Many shell functions, therefore, require
PIDLs as parameters instead of traditional paths, or return
PIDLs allocated from within the shell function that you may
need to free later. For the purposes of this article, you may
consider a PIDL to be a pointer — supplied by the shell —
that points to arbitrary data that should not be modified in
any way. Functions have been provided in unit kbsnPIDL
that will convert a file system path to a PIDL, and vice versa.
The only unusual aspect is that you should never free a PIDL
with the usual VCL functions, such as FreeMem; you must
use only the FreePIDL function provided in unit kbsnPIDL.

Getting “In the Loop”
The key to receiving shell change notifications is the
SHChangeNotifyRegister function. Here’s its prototype:

function SHChangeNotifyRegister(Window: HWND; Flags: DWORD;
EventMask: ULONG; MessageID: UINT; ItemCount: DWORD;

var Items: TNotifyRegister): THandle; stdcall;

It’s used to register a window with the shell, which will then
be notified of all subsequent SHChangeNotify events. It’s
exported from SHELL32.DLL. Like most undocumented
functions, it’s not exported by name. Therefore, it’s necessary
to link using the function ordinal. The export ordinal for
SHChangeNotifyRegister is 2.

The Window parameter specifies the handle of the window
that should receive the notification messages. This can be
any window you desire, but it’s usually best to create an
26 March 1999 Delphi Informant
invisible window whose only responsibility is handling the
notification messages.

The EventMask parameter is a bit-mask of all the events you
are interested in. You can use any combination of the
SHCNE_xxx constants, the same ones that are used for the
SHChangeNotify function, combined with a logical or opera-
tion. Figure 1 provides a complete listing of these constants.

The Flags parameter allows you to specify optional behavior for
the notifications. You may filter out interrupt or non-interrupt
events, and decide whether to use a proxy window under NT.
See Figure 2 for a list of these flags. Typically, both interrupt
and non-interrupt flags should be set, as you generally don’t
care about the ultimate source of the event. At any rate, inter-
rupt events are extremely rare. The SHCNF_NO_PROXY flag
allows you to handle the notification more efficiently on
Windows NT, but it complicates the message handling proce-
dure, and requires a couple more undocumented functions.
We’ll explain the whole situation with NT later.

The MessageID parameter is the identifier of the message that
will be sent to that window. It’s recommended you use a value
derived from WM_USER for the value of MessageID to avoid

Undocumented
conflicts with system messages. If you use a single-purpose
window as previously described, the value of WM_USER itself
is fine. The details of the message handling are explained later.

The ItemCount parameter specifies the number of paths you
wish to monitor. Usually, this will be 1, but it’s possible to
monitor many different paths via the Items parameter.

The Items parameter is a pointer to a record of type
TNotifyRegister. The following is the definition of this record type:

TNotifyRegister = packed record
pidlPath: PItemIDList;

bWatchSubtree: BOOL;

end;

If the pidlPath data member of this record specifies a valid
PIDL for a valid folder, you’ll receive events that affect the
folder itself, as well as any items in the folder. If you set the
bWatchSubtree data member to True, you’ll receive events for
the entire sub-tree rooted at the specified folder, e.g. all fold-
ers and items below the specified folder in addition to the
folder itself. If you set the pidlPath data member to nil, you’ll
receive events for every folder and item on the system. If the
value of the ItemCount parameter is greater than 1, you must
supply the same number of TNotifyRegister records to the
Items parameter in the form of a vector, one record packed
after another into a buffer large enough to hold all of them.

If the SHChangeNotifyRegister function succeeds, the return
value is a handle of a shell change notification object. You
should save this handle for later use. If the function fails, the
return value is 0.

Shut It Off
When you’re finished monitoring the notification events,
you should pass the notification handle returned by
SHChangeNotifyRegister to SHChangeNotifyDeregister. The
export ordinal value of SHChangeNotifyDeregister is 4, and
the function declaration is as follows:

function SHChangeNotifyDeregister(Notification: THandle):

BOOL; stdcall;

The Notification parameter takes the handle of a shell
change notification object returned by a successful call to
SHChangeNotifyRegister. As you might guess, if the func-
tion succeeds, the return value is True; if it fails, the return
value is False.

Getting the Message
After registering to receive shell notification messages, the
shell will send its notification messages to the window you
specified in the Window parameter of the
SHChangeNotifyRegister function. You must then crack the
relevant data out of the message to get useful information.
Delphi doesn’t define a special message record type for
these messages, so simply use the standard TMessage type.
27 March 1999 Delphi Informant
This is a variant record type, but you should consider it to
be defined as shown here:

TMessage = record
Msg: DWORD;

WParam: DWORD;

LParam: DWORD;

Result: DWORD);

end;

The Msg data member of the message record will be set to
whatever value you specified in the MessageID parameter
you passed to the SHChangeNotifyRegister function. Use
this parameter to recognize notification messages, as
opposed to the myriad other miscellaneous messages the
Windows system will send to your window.

The LParam data member will be set to the ID of the event
that occurred. This will be one of the SHCNE_xxx values
shown in Figure 1. It’s possible that multiple event IDs
could be or’ed together, so it would be best to test for the
presence of a given ID value, using a logical and operation,
rather than via an equality test using the = operator.

The WParam will be a pointer to a record of type
TTwoPIDLArray. The name WParam, which is C-style short-
hand for Word Parameter, is an anachronism. It’s now actual-
ly a 32-bit long type, just like LParam, and so can store a
pointer. This record points to an array containing the two
PIDLs associated with the event, as shown here:

TTwoPIDLArray = packed record
PIDL1: PItemIDList;

PIDL2: PItemIDList;

end;

Those of you familiar with the SHChangeNotify function may
be wondering why you only receive PIDLs from shell change
notification messages, even though the SHChangeNotify func-
tion accepts PChar and DWORD data types, as well as PIDLs.
The reason is that all the data types are automatically convert-
ed to PIDLs by the shell before being sent anywhere. For
SHCNF_PATH and SHCNF_PRINTER types, this seems
obvious enough. For the SHCNF_DWORD type, a 10-byte
“fake” PIDL is created, with the two DWORD items immedi-
ately following the cb data member. Ignore the cb data mem-
ber; it has no use in this situation except as a placeholder. This
encoding scheme is encapsulated for your convenience by the
TDWORDItemID record type, as shown here:

TDWORDItemID = packed record
cb: Word; { Ignore }
dwItem1: DWORD;

dwItem2: DWORD;

end;

The SHCNE_FREESPACE event is handled as a special case.
When the drive is passed in as a path or a PIDL, it’s converted to
a DWORD contained by the above encoding scheme, with dri-
ves A: to Z: mapping onto bits 0 to 25. For example, drive D:

Undocumented
would map to bit 3, so the value of the dwItem1 data member
would have a value of 8. If there are two drives specified for the
event, then two bits will be set in the DWORD. The value of
the second DWORD in this case appears to be meaningless.

Windows NT and Memory Maps
This all seems simple enough, at least by the standards of
Windows shell programming, but on Windows NT, there is a
bit of a problem. NT maintains a careful separation of mem-
ory used by different processes. One process attempting to
directly access memory owned by another process puts you in
the express lane to your favorite exception, the General
Protection Fault. You can’t simply send a message to a win-
dow in a different process, and still expect the structure
pointer contained in that message to be accessible.

To get around this, NT actually dumps all the relevant data into
a memory-mapped file, which is accessible from any process,
then sends the memory map handle and a process ID as the
parameters to the message. To remain compatible with Windows
95, somebody obviously has to extract the information from that
memory map on the other side. The way this works is that NT
automatically creates a hidden “proxy” window whenever you
call SHChangeNotifyRegister. It is the proxy window that receives
the notification message containing the memory map. Its mes-
sage handler then extracts all the information, and passes on the
correct message with the expected data to your window.

Of course, this is not exactly efficient, which is where the
SHCNF_NO_PROXY flag comes in. By specifying that flag
when calling SHChangeNotifyRegister, you’re telling NT to
not create the proxy window, so the memory map handle gets
passed directly to your window in the notification message.
It’s then up to you to extract the relevant information from
the memory map. Fortunately, there are two functions that
do all the work for you: SHChangeNotification_Lock and
SHChangeNotification_Unlock.

The export ordinal value of SHChangeNotification_Lock is
644, and the function declaration is shown here:

function SHChangeNotification_Lock(MemoryMap: THandle;

ProcessID: DWORD; var PIDLs: PTwoPIDLArray;

var EventID: ULONG): THandle; stdcall;

The MemoryMap parameter is a handle to a chunk of memory
allocated by the NT system. This handle will be contained in
the WParam data member of the shell notification message.

The ProcessID parameter takes the ID of the process that gen-
erated the memory map. This value is contained in the
LParam data member of the shell notification message.

The PIDLs parameter is output-only, and takes a variable of
type pointer to a record of type TTwoPIDLArray. You may ini-
tialize the pointer variable to nil before calling the function.
Do not allocate an actual TTwoPIDLArray record. When the
function returns, this pointer will point to a TTwoPIDLArray
28 March 1999 Delphi Informant
record that contains the two PIDLs for the notification mes-
sage, which are normally passed via the WParam data member
of the message. Don’t try to free this pointer directly, either.

The EventID parameter is also output-only, and takes a vari-
able of type ULONG, or Longint, if you prefer. You may ini-
tialize this variable to 0 before calling the function. When the
function returns, this variable will contain the EventID of the
event for this message, which is normally passed by the
LParam data member of the message.

The return value is a handle to the memory map, which you
should save; you’ll need it later. If by some strange circum-
stance the function should fail, it returns a 0.

When you have finished working with the data extracted via
SHChangeNotification_Lock, you should unlock the memory
map so NT can properly dispose of it. This is the purpose of
the SHChangeNotification_Unlock function. The export ordi-
nal value of SHChangeNotification_Unlock is 645, and the
function declaration is as follows:

function SHChangeNotification_Unlock(Lock: THandle):

BOOL; stdcall;

The Lock parameter is the handle you obtained from the call
to the SHChangeNotification_Lock function. The function
returns True if successful, and False on failure.

It’s important to note that these functions exist only in
Windows NT. If you attempt to link to them while running
Windows 95, you’ll experience a link failure. Therefore, it’s
impossible to use the Delphi external method for linking,
unless you are completely sure your program will never run
on anything but NT. You should use dynamic linking instead
by calling the GetProcAddress Windows API function after
testing which operating system is running. See Figure 3 for
an example of using these NT mapping functions.

The Origin of Events
So, now you know how to receive all these shell notifications
that are floating around, but who is actually generating them?
According to the Windows documentation, “An application
should use this function (SHChangeNotify) if it performs an
action that may affect the shell.” That seems to be a bit of
wishful thinking. We can’t imagine there are many applica-
tion developers who really give a hoot whether the shell is
kept informed of their actions.

Fortunately, the shell seems to generate most of the notifications
itself. Sometimes, it may be directly responsible for an event, in
which case, it’s easy enough for it to make the call to
SHChangeNotify. However, for things likely to originate in
another application, such as file creation, it would presumably
have to be monitoring the system somehow to generate the
event. The result is that these notifications can be a bit unreli-
able, and often, there is a noticeable delay between the event and
the notification. Also, the shell has only a 10-item event buffer,

Undocumented

var
PIDLs: PTwoPIDLArray;

EventId: DWORD;

Lock: THandle;

begin
// If NT, use the memory map to access the PIDL data.
if (SysUtils.Win32Platform = VER_PLATFORM_WIN32_NT) then

begin
Lock := SHChangeNotification_Lock(THandle(

TheMessage.wParam), DWORD(TheMessage.lParam),

PIDLs, EventId);

if (Lock <> 0) then
try

ProcessEvent(EventId, PIDLs);

finally
SHChangeNotification_Unlock(Lock);

end;
end

else
// If this isn't NT, access the PIDL data directly.
begin

EventId := DWORD(TheMessage.lParam);

PIDLs := PTwoPIDLArray(TheMessage.wParam);

ProcessEvent(EventId , PIDLs);

end;
end;

Figure 3: Example of using SHChangeNotification_Lock.
and may decide to consolidate a number of events with a generic
SHCNE_UPDATEDIR in case of an overflow.

In short, don’t depend on these notifications for mission-
critical applications.

Don’t Believe Everything You Read
Another problem is that the Windows documentation isn’t
always completely accurate in its descriptions of the various
events. Following are variations from the documentation
we’ve observed after actual implementation.

An SHCNE_ATTRIBUTES is supposed to happen when “the
attributes of an item or folder have changed.” However, we have
only witnessed an SHCNE_ATTRIBUTES event occurring
when the printer status changed. Changing file and folder
attributes produces an SHCNE_UPDATEITEM event instead.

SHCNE_NETSHARE and SHCNE_NETUNSHARE are sup-
posed to occur when you share or unshare a folder. However, on
Windows NT, the SHCNE_NETUNSHARE event never
occurs. You get a SHCNE_NETSHARE event on both occa-
sions. On Windows 95, they appear to work as advertised.

An SHCNE_UPDATEIMAGE event is claimed to signify that
an image in the system image list has changed. However, images
in the system image list should never change. What the event
really means is that something that was using that particular
icon index in the system image list is now using something else.
Typical uses of SHCNE_UPDATEIMAGE include the Recycle
Bin changing between empty and full, and the icon associated
with a CD drive when a CD is inserted or removed. Document
icons, which change as a result of changing a file-type associa-
tion, do not generate an SHCNE_UPDATEIMAGE. They will
produce an SHCNE_ASSOCCHANGED event instead.
29 March 1999 Delphi Informant
SHCNE_MEDIAINSERTED and
SHCNE_MEDIAREMOVED aren’t generated in response
to inserting or removing standard floppy diskettes. The disk
drive hardware apparently doesn’t support this information.

If you’re deleting files into a Recycle Bin, you won’t get an
SHCNE_DELETE method, as you might expect. You’ll actu-
ally get a SHCNE_RENAMEITEM. The
SHCNE_DELETE comes only after you empty the Recycle
Bin. This makes sense if you think about it, because you’re
actually moving the file from its old path to the Recycle Bin’s
path, but it might not be completely intuitive at first.

Some events can fire multiple times. This seems to apply to
most file events. For example, if you delete a file, you’ll probably
get notified twice with identical messages. Be prepared for that.

If you want to know more, it’s probably best that you test the
items your particular application will be using, on as many plat-
forms as possible.

The Delphi Way
So much for the messy details demanded by the Windows API.
Let’s design a component that will hide all this minutiae from
those Delphi developers who have better things to worry about.

First, we’ll define the component’s public interface. There are
two main issues with this component: where to watch, and
what to watch for. The API provides the capability to filter a
few criteria: event type, interrupt or non-interrupt, the folder
to watch for events, and whether that folder’s sub-folders
should also be watched. Naturally, we also need some means
of turning this thing on or off.

Identifying the folders to watch is the only unusual aspect of
all this. As we mentioned previously, not all folders can be
identified by file system paths. Using PIDLs to identify these
folders is impractical for the design-time property editor, how-
ever, because PIDLs are opaque data types and can’t be manu-
ally edited by a developer.

The solution is to use two properties. One property is a new
enumerated type, TkbSpecialLocation, which encapsulates the list
of Windows API constants that correspond to various “special”
folders, e.g. Control Panel. These constants can be used with the
SHGetSpecialFolderLocation API function to obtain a PIDL to
that folder. By setting a property to one of these enumerated val-
ues, special locations can be selected without requiring the devel-
oper to type in the data for the PIDL. One of the values of
TkbSpecialLocation is kbslPath. Setting this value will enable a
second property to allow the developer to enter a specific file sys-
tem path to monitor. Here’s the final list of published properties:

property Active: Boolean

property HandledEvents: TkbShellNotifyEventTypes

property InterruptOptions: TkbInterruptOptions

property RootFolder: TkbSpecialLocation

property RootPath: TFileName

property WatchChildren: Boolean;

TkbShellNotifySimpleEvent = procedure(Sender: TObject;
IsInterrupt: Boolean) of object;

TkbShellNotifyIndexEvent = procedure(Sender: TObject;
Index: LongInt; IsInterrupt: Boolean) of object;

TkbShellNotifyGeneralEvent = procedure(Sender: TObject;
PIDL: Pointer; Path: TFileName;

IsInterrupt: Boolean) of object;

TkbShellNotifyRenameEvent = procedure(Sender: TObject;
OldPIDL: Pointer; OldPath: TFileName; NewPIDL: Pointer;

NewPath: TFileName; IsInterrupt: Boolean) of object;

TkbShellNotifyGenericEvent = procedure(Sender: TObject;
EventType: TkbShellNotifyEventType; PIDL1: Pointer;

PIDL2: Pointer; IsInterrupt: Boolean) of object;

Figure 4: Event procedure type definitions.

Undocumented

property OnAnyEvent: TkbShellNotifyGenericEvent

property OnDiskEvent: TkbShellNotifyGenericEvent

property OnGlobalEvent: TkbShellNotifyGenericEvent

property OnAssociationChanged: TkbShellNotifySimpleEvent

property OnAttributesChanged: TkbShellNotifyGeneralEvent

property OnDriveAdded: TkbShellNotifyGeneralEvent

property OnDriveRemoved: TkbShellNotifyGeneralEvent

property OnExtendedEvent: TkbShellNotifyGenericEvent

property OnFolderCreated: TkbShellNotifyGeneralEvent

property OnFolderDeleted: TkbShellNotifyGeneralEvent

property OnFolderRenamed: TkbShellNotifyRenameEvent

property OnFolderUpdated: TkbShellNotifyGeneralEvent

property OnFreespaceChanged: TkbShellNotifyGeneralEvent

property OnImageUpdated: TkbShellNotifyIndexEvent

property OnItemCreated: TkbShellNotifyGeneralEvent

property OnItemDeleted: TkbShellNotifyGeneralEvent

property OnItemRenamed: TkbShellNotifyRenameEvent

property OnItemUpdated: TkbShellNotifyGeneralEvent

property OnMediaInserted: TkbShellNotifyGeneralEvent

property OnMediaRemoved: TkbShellNotifyGeneralEvent

property OnNetworkDriveAdded: TkbShellNotifyGeneralEvent

property OnResourceShared: TkbShellNotifyGeneralEvent

property OnResourceUnshared: TkbShellNotifyGeneralEvent

property OnServerDisconnected: TkbShellNotifyGeneralEvent

Figure 5: Design-time published events.
For those developers who like to get down and dirty, we’ll sur-
face a couple of run-time properties that allow them to med-
dle at the API level. There are really only two bits of informa-
tion we can provide: the notification handle, and the actual
root PIDL. These properties are:

property Handle: THandle
property RootPIDL: PItemIDList

Because this component encapsulates a notification mech-
anism, it should be clear that events are at its heart. We’ll
want to pre-crack the event data for the developer’s conve-
nience, of course. Every event will include the Sender para-
meter, as usual, and a Boolean value identifying whether
the event was generated by an event. Some review of the
API documentation reveals that we have five basic patterns
of “data” parameters:
1) No extra parameters.
2) One DWORD.
3) One non-nil PIDL, which might represent a path.
30 March 1999 Delphi Informant
4) Two non-nil PIDLs, which might represent paths.
5) “Generic” events that have two raw PIDLs, either of

which might be nil.

The definitions of the procedural types representing these five
event categories are shown in Figure 4. You may notice that
PIDL parameters are represented as Pointer types, rather than
PItemIDList types. This is because PItemIDList is defined in
the ShlObj unit, which is not added automatically to form
units when the component is dropped. This has the annoying
quality of causing compiler errors when an event is assigned,
unless unit ShlObj is manually added to the form’s interface
part uses clause.

Deciding what the events will be was fairly simple. There
should be a component event for each possible shell event.
In addition, we’ll define events to encapsulate the three
“collective” events defined by the Windows API (for
those hardy souls who like working with raw Windows
data). The list of events and their definitions are found
in Figure 5.

The last area of the public interface to consider, the run-
time methods, lends a few candidates for consideration. It’s
handy to have auxiliary methods for setting the Active prop-
erty on and off. Also, virtually any component that handles
system data needs some sort of reset capability. These meth-
ods are shown here:

procedure Activate;

procedure Deactivate;

procedure Reset;

There are, of course, many details to implementing a com-
ponent that go beyond the core functions that the compo-
nent encapsulates. As there are many other excellent refer-
ences that cover the details of implementing custom com-
ponents in Delphi, this article will not cover them. Instead,
it will concentrate only on those pieces of the component’s
implementation that directly relate to the specific problem
of shell notifications.

The implementation of shell notifications revolves around the
calls to SHChangeNotifyRegister and SHChangeNotifyDeregister.
Everything we do in this component will be in support of
those function calls. Let’s outline how the public properties
and methods relate to those functions.

The property most directly linked to the calls is Active.
Setting this property to True will cause
SHChangeNotifyRegister to be invoked with parameters
governed by the other four published properties. As you might
guess, setting it to False will cause SHChangeNotifyDeregister
to terminate the notifications.

The mechanics of calling the API functions are delegated to
two private methods, StartWatching and StopWatching, which
will be discussed later. Meanwhile, here’s a code snippet from

Undocumented

procedure TkbShellNotify.HandleMessage(

var TheMessage: TMessage);

var
PIDLs: PTwoPIDLArray;

EventId: DWORD;

Lock: THandle;

begin
{ Handle only the WM_SHELLNOTIFY message. }
if (TheMessage.Msg = WM_SHELLNOTIFY) then

begin
{ If this is NT, use the memory map to access the

PIDL data. }
if SysUtils.Win32Platform=VER_PLATFORM_WIN32_NT then

begin
Lock := SHChangeNotification_Lock(THandle(

TheMessage.wParam), DWORD(TheMessage.lParam),

PIDLs, EventId);

if (Lock <> 0) then
try

Self.ProcessEvent(EventId, PIDLs);

finally
SHChangeNotification_Unlock(Lock);

end;
end

{ If this is not NT, access the PIDL data directly. }
else

begin
EventId := DWORD(TheMessage.lParam);

PIDLs := PTwoPIDLArray(TheMessage.wParam);

Self.ProcessEvent(EventID, PIDLs);

end;
end { if }

{ Call the default Windows procedure for any other message. }
else

TheMessage.Result := DefWindowProc(Self.FMessageWindow,

TheMessage.Msg,TheMessage.wParam,TheMessage.lParam);

end;

Figure 6: An example message-handling method.
the private property writer method, SetActive, which illus-
trates the logic at work:

// Do nothing if the new value is the same as the old.
if (NewValue <> Self.FActive) then

{ If we're activating, start watching. }
if (NewValue) then

Self.StartWatching;

else { If we're deactivating, stop watching. }
Self.StopWatching;

The other four properties (besides Active) can substantially
change the notification model, if they are modified. There
is no way to update these “on the fly” when Active is True,
so it’s necessary to “reset” the shell notification if these
properties are changed while Active is True. This is the
purpose of the Reset method. It simply calls the private
methods StopWatching and StartWatching, if the compo-
nent is Active. This has the effect of stopping the notifica-
tions with SHChangeNotifyDeregister, and calling
SHChangeNotifyRegister with the current values of the
component’s properties. The property writer methods for
these four properties call the Reset method after updating
the component’s internal data member corresponding to
that property.

A Window All Our Own
Next, we consider how to manage the shell notification mes-
sages, which will result from the call to SHChangeNotifyRegister.
A window must be available to process all the notification
messages generated by the shell. How best to provide this win-
dow? We could use the application’s main form, but that
would require hooking that form’s window procedure, a messy
undertaking at best. It seems simplest to generate our own
invisible window, whose sole purpose is to handle those notifi-
cation messages, and over whose destiny we have absolute
control. This step eliminates problems with conflicting mes-
sages and clashing hooks.

The Delphi VCL thoughtfully provides a couple of functions
to facilitate this scheme. They are AllocateHWnd and
DeallocateHWnd, found in the Forms unit. AllocateHWnd ’s
entire purpose in life is to generate a handle to an invisible
window, using a window message-handling procedure you
provide. Exactly what we need! Now, in the component’s
constructor, we can get and store a handle to a window that
has nothing better to do than manage our icon’s messages.
Here’s a call to this handy method:

{ Allocate a message-handling window. }
Self.FMessageWindow := AllocateHWnd(Self.HandleMessage);

As you can see, the call is trivial. What’s important is the
message-handling procedure we passed. This is where the
notification messages from the shell are received, and where
we have the opportunity to dispatch them. AllocateHWnd
takes a single argument of TWndMethod, a class-member pro-
cedure that takes a single argument of type TMessage. It’s up
to us to provide that procedure. Figure 6 shows our compo-
nent’s message-handling procedure, to give you the idea.
31 March 1999 Delphi Informant
As we discussed earlier, we first check the message identifier to
verify that this incoming message is a WM_SHELLNOTIFY
message. We ignore all others, and send them to default han-
dling, because none of the miscellaneous messages typically
broadcast to every window in the system interest us.
WM_SHELLNOTIFY, if you were wondering, is a constant
we define ourselves, not one provided by Windows. Setting it
equal to WM_USER is the easiest thing to do, and perfectly
safe because we use this window only for handling shell notifi-
cation messages.

Once we’re satisfied this is indeed a notification message,
we decode the LParam and WParam values to determine
which event the message is relating to us, and the associat-
ed PIDL data. Notice how we extract the data using the
SHChangeNotification_Lock API call if the component is
running on NT. You’ll also see that the actual detailed
handling of the message is delegated to another private
method, ProcessEvent, to avoid repeating that rather sub-
stantial bit of code.

The private method ProcessEvent (see Figure 7) is where we
crack the PIDLs out of the TTwoPIDLArray record, convert
them to file-system paths if possible, and dispatch them to
the appropriate event handler. The centerpiece of this
method is a case statement that calls the event-handling
method corresponding to the event type. These event-

Undocumented

procedure TkbShellNotify.StartWatching;

var
NotifyPathData: TNotifyRegister;

Flags: DWORD;

EventType: TkbShellNotifyEventType;

EventMask: DWORD;

begin
{ Initialize Flags. }
Flags := SHCNF_NO_PROXY;

if kbioAcceptInterrupts in Self.InterruptOptions then
Flags := Flags or SHCNF_ACCEPT_INTERRUPTS;

if kbioAcceptNonInterrupts in Self.InterruptOptions then
Flags := Flags or SHCNF_ACCEPT_NON_INTERRUPTS;

{ Initialize EventMask. }
EventMask := 0;

for EventType := Low(TkbShellNotifyEventType) to
High(TkbShellNotifyEventType) do

if (EventType in Self.HandledEvents) then
EventMask :=

EventMask or ShellNotifyEnumToConst(EventType);

{ Initialize Notification Path data. }
NotifyPathData.pidlPath := Self.RootPIDL;

NotifyPathData.bWatchSubtree := Self.WatchChildren;

{ Register for notification and store the handle. }
Self.FHandle := SHChangeNotifyRegister(

Self.FMessageWindow, Flags, EventMask, WM_SHELLNOTIFY,

1, NotifyPathData);

{ If registration failed, set Active to False. }
if (Self.Handle = 0) then

Self.Deactivate;

end;

Figure 8: The StartWatching private method.
handling methods are necessary because events are often
left unassigned by the developer, and calling these nil han-
dlers directly would cause exception faults. There is one
such method for each published event that accepts the raw
PIDLs and paths, performs any additional processing that
may be required to extract useful information, and calls
the event handler if it has been assigned.

The other wrinkle is the for loop, which iterates through the
possible event types, comparing each to the EventID parame-
ter using a logical and comparison to see if the matching
event handler should be fired. This is necessary because the
EventID parameter is actually a bitmap of flags, and, as such,
might include more than one event flag. This prohibits a sim-
ple equality comparison using the = operator.
32 March 1999 Delphi Informant
The Heart of the Matter
Now, with all these supporting tasks worked out, we can
finally get to the heart of the matter — the long-awaited
call to SHChangeNotifyRegister. It might seem a bit anticli-
mactic, but this function is found in only one place
throughout the entire component. This place, of course, is
the StartWatching private method. Let’s work our way
through it, as shown in Figure 8.

First, we initialize the flags. We’ll always specify
SHCNF_NO_PROXY, because we’re prepared to handle
the message correctly on NT. We’ll also set the
SHCNF_ACCEPT_INTERRUPTS and
SHCNF_ACCEPT_NON_INTERRUPTS flags, as deter-
mined by the value of the InterruptOptions property.

Next, we initialize the EventMask parameter to specify the
shell events we’re interested in monitoring. This is accom-
plished by iterating through all possible values of the
TkbShellNotifyEventType enumerated type, and setting the
corresponding flag bits using a logical or operation each time
we find a value, which is set in the HandledEvents property.

The last parameter to set up is the folder path information.
We simply fill the necessary TNotifyRegister record with the
values found in the RootPIDL and WatchChildren properties.

Finally, we can make the call to SHChangeNotifyRegister and
save the handle returned by that function.
procedure TkbShellNotify.ProcessEvent(EventID: DWORD;

PIDLs: PTwoPIDLArray);

var
EventType: TkbShellNotifyEventType;

PIDL1: PItemIDList;

PIDL2: PItemIDList;

Path1: TFileName;

Path2: TFileName;

IsInterrupt: Boolean;

begin
{ Crack open the Two-PIDL array. }
PIDL1 := PIDLs.PIDL1;

PIDL2 := PIDLs.PIDL2;

{ Try to convert PIDLs to Paths. }
Path1 := GetPathFromPIDL(PIDL1);

Path2 := GetPathFromPIDL(PIDL2);

{ Determine if event is interrupt-caused. }
IsInterrupt := Boolean(EventID and SHCNE_INTERRUPT);

{ Iterate through possible events and fire as appropriate.
This is necessary because event IDs are flags, and
there may be more than one in a particular message. }

for EventType := Low(TkbShellNotifyEventType) to
High(TkbShellNotifyEventType) do begin

{ Skip the "multi" event types.
They will be fired as needed below. }

if (EventType in [kbsnAnyEvent, kbsnDiskEvent,

kbsnGlobalEvent]) then
Continue;

{ If the current event type is flagged... }
if ((ShellNotifyEnumToConst(EventType) and

EventID) <> 0) then begin
{ Fire appropriate "multi" events for this event. }
Self.AnyEvent(EventType, PIDL1, PIDL2, IsInterrupt);

if ((ShellNotifyEnumToConst(kbsnGlobalEvent) and
ShellNotifyEnumToConst(EventType)) <> 0) then

Self.GlobalEvent(EventType, PIDL1,

PIDL2, IsInterrupt);

if ((ShellNotifyEnumToConst(kbsnDiskEvent) and
ShellNotifyEnumToConst(EventType)) <> 0) then

Self.DiskEvent(EventType,PIDL1,PIDL2,IsInterrupt);

{ Fire specific event. }
case (EventType) of

kbsnAssociationChanged:

Self.AssociationChanged(IsInterrupt);

{ Other event-handling methods with
appropriate parameters... }

kbsnServerDisconnected:

Self.ServerDisconnected(PIDL1,Path1,IsInterrupt);

end; { case }
end; { if }

end; { for }
end;

Figure 7: An abbreviated event-processing method.

Undocumented
The StopWatching method is quite simple by comparison. It
merely calls the SHChangeNotifyDeregister function, giving it
the handle saved from the call to SHChangeNotifyRegister,
and resets the internal data member containing the handle
value to zero. Here’s the entire method:

procedure TkbShellNotify.StopWatching;

begin
{ Deregister the notification handle

and set the handle to nil. }
SHChangeNotifyDeregister(Self.FHandle);

Self.FHandle := 0;

end;

The result is a component that makes shell notifications almost
trivial to access. Go ahead. Try it out with the sample event
monitor provided with this article’s companion source code.
Feel free to forget all that Windows API complexity.

The Bottom Line
The Shell Notifications API gives you powerful insight
into the internal workings of the Win32 shell. Your appli-
cations can use it to react to all sorts of important system
events, giving you that extra edge over the competition.
The TkbShellNotify component gives you this API in a
convenient and simple package, making these services
almost trivial to exploit. Now, get out there and write
something amazing! ∆

The files referenced in this article are available on the Delphi
Informant Works CD located in INFORM\99\MAR\DI9903KB.

James Holderness is a software developer specializing in C/C++ Windows
applications. He also runs a Web site on undocumented functions in Windows
95 (http://www.geocities.com/SiliconValley/4942). He is currently working
for FerretSoft LLC (http://www.ferretsoft.com), where he helps create the
Ferret line of Internet search tools. James can be reached via e-mail at
james@ferretsoft.com or jholderness@geocities.com.

Kevin J. Bluck is an independent contractor specializing in Delphi development.
He lives in Sacramento, CA with his lovely wife Natasha. He spends his spare
time chasing weather balloons and rockets as a member of JP Aerospace
(http://www.jpaerospace.com), a group striving to be the first amateur organiza-
tion to send a rocket into space. Kevin can be reached via e-mail at
kbluck@ix.netcom.com.
33 March 1999 Delphi Informant

http://www.jpaerospace.com
http://www.geocities.com/SiliconValley/4942
http://www.ferretsoft.com

34 March 1999 Delphi Informant

New & Used

By Bill Todd

Figure 1: The ReportBuilder re
ReportBuilder Pro 4.0
Newcomer Is Worth Switching To

Although ReportBuilder is a relative newcomer to the family of Delphi report-
ing tools, it’s been worth the wait. If you’re looking for a single reporting

tool with different layouts for different pages, side-by-side bands, newspaper-style
columns, end-user reporting, and fast drag-and-drop report layout, this is it. (This
review is based on a pre-release version of ReportBuilder 4.0, so there may be
some differences between the features described here and the shipping product.)
To build a report, begin by dropping a
TTable and TDataSource on a Delphi form.
Next, move to the ReportBuilder page of
the Component palette, and drop a
TppBDEPipeline and TppReport on your
form. The BDEPipeline component is one
of a family of pipelines that supply data
to your report. Use BDEPipeline to get
data from a BDE (Borland Database
Engine) database, or the DBPipeline if
you’re working with a BDE replacement.
The TextPipeline component lets you use
data in a text file for your report, and the
JITPipeline supplies data from a non-
port designer.
database source. You can also create your
own pipeline components to supply data
from proprietary sources. Set the pipeline
component’s DataSource property to con-
nect it to your DataSource component,
and you’re ready to double-click the Report
component to open the designer, shown
in Figure 1.

Ergonomically Speaking
The designer is well laid out and easy to
use. The first row of toolbars includes the
non-data-aware, data-aware, and advanced
components. The next row begins with a
toolbar (which is empty in Figure 1). The
contents of this toolbar vary depending on
the component you select in the designer.
For example, if you select a data-aware
component, the toolbar contains a drop-
down list of data pipeline components, and
a drop-down list of fields from the current-
ly selected pipeline. To the right is a text-
control toolbar that will be familiar to any-
one who has used a Windows word proces-
sor. At the end of the formatting toolbar
are Bring To Front and Send To Back but-
tons for working with layered components.

The third row of toolbars begins with one
that is unique: the nudge bar. The four but-
tons on this toolbar let you nudge the select-
ed components one pixel up, down, left, or
right. You can use a keyboard combination of
C plus the appropriate arrow key to achieve
the same effect. Either method makes precise

New & Used
alignment easy.
The next set of
toolbars pro-
vides a full set
of sizing and
alignment
options,
including
grow-to-largest
and shrink-to-

smallest, in both the horizontal and vertical directions; align
left, right, or center; space the selected components evenly
either horizontally or vertically; and center the selected com-
ponents horizontally or vertically within their band.

You can also position and size components with great preci-
sion by right-clicking and displaying the Position dialog box
(see Figure 2). The Position dialog box lets you specify size
and position to three decimal places. The designer makes
extensive use of context menus, so if you want to do some-
thing to a component, simply right-click on it; the pop-up
menu will likely offer the choice you need.

From the View | Toolbars menu, you can open the Report
Tree and Data Tree windows, shown in Figure 3. The Report
Tree allows you to see all the components in each band of
your report, and to select one or more components. This is
handy for working with layered components. The Data Tree
shows all the fields for each pipeline component on the
report. You can drag fields from the Data Tree and drop them
in any band of your report. When you drop a field, the
appropriate data-aware control is created automatically. You
can also choose whether dropping a field creates a data-aware
control, a label containing the field name, or both.

Suite Components
ReportBuilder has a full suite of data-aware and non-data-
aware components to print any type of data on your report.

Figure 2: The Position dialog box.
35 March 1999 Delphi Informant

Figure 3: The Report Tree and Data Tree windows.
However, the two components on the Advanced toolbar —
Region and SubReport — really set ReportBuilder apart. The
Region component allows you to group components, includ-
ing subreports, so they will be positioned as a group, both at
design time and run time.

The SubReport component is a complete report, including
bands, that you can position within another report. The
power of subreports is limited only by your imagination. For
example, you can use subreports to create a report that con-
sists of several sections, each of which has its own layout and
data source. When you add subreports to a report, a tab is
added to the bottom of the report designer for each subre-
port. Simply click on a tab to go to the design view for that
subreport. You can also place subreports in regions, and place
them next to each other within bands of the main or other
subreports. This means you could print a report that shows
information about a customer, displays a list of that cus-
tomer’s locations, and displays a list of the products that cus-
tomer has ordered. Subreports also give you the ultimate in
power for creating multi-level master-detail reports.

ReportBuilder gives you total control of relative positioning
when you place multiple components that can stretch, such
as subreports or memos, in the same band. Suppose you want
to print a memo, and below the memo, you need to print
some other fields from a database. Simply set to True the
ShiftWithParent property of the components below the
memo, and they will move down as the memo component
expands. Suppose you also want to put a frame around the
memo component in your report. Simply drop a Shape com-
ponent on top of the memo, set its StretchWithParent proper-
ty to True, and send it to the back. Now the Shape compo-
nent will automatically expand and contract to fit the size of
the memo in each record as it’s printed. If you have multiple
stretching components positioned vertically in the same
band, you can set each component’s ShiftRelativeTo property
to ensure they print in the correct order relative to each other.

Number Crunching
ReportBuilder allows you to create calculated
values in several ways. First, of course, you
can add Delphi calculated fields to your
datasets. Second, the TppDBCalc component
lets you calculate the sum, count, min, max,
or average for a group of records. Finally, the
TppVariable component lets you add code to
its OnCalc event handler to generate values
any way you wish. If the value of one
TppVariable component uses the value of
another, you can set its CalcOrder to ensure
the variables calculate in the correct order to
produce a correct result. ReportBuilder also
lets you choose to generate reports in one
pass or two. One pass is faster, but using a
two-pass report lets you display grand totals
at the beginning of the report, or use “page n
of m” page numbers.

New & Used
Ease of Use
ReportBuilder lets you give your end users the ability to
design and save reports with unparalleled ease and control.
If you can safely turn your users loose in your database, a
query wizard helps them create SQL statements to fetch
the data on which to report. If the structure of the data-
base is too complex (or the tables too large) to let an
untrained user create queries and reports, you can create
data views for the user to work with. A data view is a class
that provides a level of abstraction between the database
and the user. You create data views that contain query
components that return a subset of data from one or more
tables. End users employ the data views to create reports
without direct access to the database.

The report designer for end users is identical to the
designer used by developers. One feature of the designer
particularly useful for end-user reporting is the ability to
design a report and save it as a template. Templates can be
saved to individual disk files, or to a BLOb field in a data-
base. By creating and saving a template, you can give your
end users a starting point from which they can more easily
create the reports they need. ReportBuilder also includes a
data dictionary component that allows you to create more
readable aliases for table and field names. If you build a
data dictionary, end users will only see the more meaning-
ful alias names.

ReportBuilder 4.0 has its own programming language,
RAP (Report Application Pascal). You and your end users
can use RAP to write event handlers for any object in a
report. This lets you easily create the code for calculated
values in the report, and change the properties of any
object as the report runs. For example, you could change
the color of a field depending on whether the value is pos-
itive or negative. RAP is great for developers because it
means you create and deploy complete reports, including
event handlers, without having to change your executable.
For end users, RAP provides the means to build very
sophisticated reports. When you implement end-user
reporting, ReportBuilder lets you set the level of RAP
access available to your end users so you can match the
complexity to their needs.

The Bottom Line
I hate creating reports. One of the first things I look for
in a reporting tool is how fast it lets me create the dozens
of simple reports that most applications require. The icing
on the cake is the Report Wizard. While it’s a great tool
for end users, it saves time for developers as well. After
setting up your data sources and pipeline components,
fire up the Report Wizard. It will let you choose a report
style, select the fields to be displayed, and define the
groups you require; click the Finish button to create your
report layout. Even if the report requires additional manu-
al customization, getting the basic layout created without
having to manually place and align each component is a
real time saver.
36 March 1999 Delphi Informant
ReportBuilder ships with an
excellent user manual in the
form of a Word document.
The foundation of the manual
is a series of tutorials of gradu-
ally increasing complexity that
teach you how to use all the
power of the product with a
minimum investment of time.
The tutorials cover everything
from creating master-detail
and master-detail-detail
reports, to putting reports in
DLLs and using the
JITPipeline component to
print a report from a string
grid. The manual also contains
an excellent introduction to
the report designer, as well as
an explanation of all its tools
and time-saving features, where
to find them, and how to use
them. If you invest a few hours in working through the
manual and tutorials, you’ll find that you are instantly pro-
ductive when you start building reports in your applications.

ReportBuilder 4.0 is available in two versions. The Pro ver-
sion includes the end-user reporting capability. Both versions
support Delphi 1 through 4, and include full source and a
30-day, money-back guarantee.

Conclusion
I shudder at the thought of changing reporting tools. I will
still have to support all my old applications using the old tool
for a long time, and I will have to endure the pain of becom-
ing proficient with a new tool. But ReportBuilder is worth
the trouble. The ability to produce any kind of report my
clients need, as well as provide end-user reporting using a sin-
gle tool, will make life so much easier in the future that the
change is worth the effort. I’ve looked at a lot of reporting
tools, and none compare with ReportBuilder 4.0. ∆

ReportBuilder 4.0 is a relative new-
comer to the family of Delphi report-
ing tools, but if you’re looking for a
single reporting tool with different lay-
outs for different pages, side-by-side
bands, newspaper-style columns, end-
user reporting, and fast drag-and-drop
report layout, this is it. I’ve looked at
many reporting tools, and none of
them compare with ReportBuilder 4.0.

Digital Metaphors Corp.
16775 Addison Road, Suite 613
Dallas, TX 75248

Phone: (972) 931-1941
E-Mail: info@digital-metaphors.com
Web Site: http://www.
digital-metaphors.com
Price: ReportBuilder, US$249;
ReportBuilder Pro, US$495; upgrade
from ReportBuilder to ReportBuilder
Pro, US$246.

Bill Todd is president of The Database Group, Inc., a database consulting and
development firm based near Phoenix. He is a Contributing Editor of Delphi
Informant, co-author of four database-programming books, author of over 60
articles, and a member of Team Borland, providing technical support on the
Inprise Internet newsgroups. He is a frequent speaker at Inprise conferences in
the US and Europe. Bill is also a nationally known trainer and has taught
Paradox and Delphi programming classes across the country and overseas. He
was an instructor on the 1995, 1996, and 1997 Borland/Softbite Delphi World
Tours. He can be reached at bill@dbginc.com or (602) 802-0178.

http://www.digital-metaphors.com
http://www.digital-metaphors.com

File | New
Directions / Commentary

The Multimedia APIs

Unlike TAPI and some of the newer APIs, the multimedia APIs have been a part of Delphi since its
inception. Unfortunately, the documentation and examples (in Delphi and elsewhere) are minimal.

Increasingly, I get messages from developers struggling to work with these APIs and frustrated by the lack
of information, so I’m writing a book on the topic (The Tomes of Delphi: 32-bit Multimedia Programming
will be published by Wordware this summer). I will also be exploring selected multimedia topics in these
pages. This column, which presents an overview of the multimedia APIs, is the first such contribution.
The 32-bit multimedia APIs fall into three general groups — low-
level, mid-level, and high-level — with low-level APIs more device-
specific, high-level APIs more generic, and mid-level APIs some-
where in between. In Windows 3.x, the MCI was the highest-level
API available. With Windows 95, a higher-level interface was intro-
duced: the MCIWnd class.

Low-level APIs. The low-level functions require more work, but
provide a high degree of control over various media devices. These
APIs include functions to work with various multimedia file types,
audio, audio mixers, and joysticks. They also include the most pre-
cise timing functions in the Windows API. Considering multime-
dia’s time-critical requirements, this should come as no surprise. As
Bob Swart demonstrated at last summer’s Inprise Conference, these
timing functions can even be used to profile applications.

The Waveform API provides a low-level interface to audio devices.
Most of these functions begin with “Wave,” or more specifically,
“WaveIn” or “WaveOut.” The former group provides functions for
recording .WAV files, the latter for playback. Because this is a low-
level API, you generally need to call several of these functions. Often
grouped with these files, but at a higher level, the PlaySound function
provides an easier means of playing .WAV files. Closely related to
these functions are the auxiliary audio functions that control auxiliary
audio devices. All of these are prefixed with “Aux,” e.g. AuxSetVolumn.

Another important set of low-level functions are those that control the
MIDI (Musical Instrument Device Interface), enabling communica-
tion with a sound card’s built-in synthesizer. With these MIDI func-
tions, you can work with sounds directly, select various patches
(instruments), and perform many sound-playing operations on the fly.

The low-level multimedia input/output functions provide a variety of
file operations with buffered and unbuffered files, files in standard
Resource Interchange File Format (RIFF), memory files, or files using
custom formats. Similarly, there are low-level functions for working
with .AVI files. These include a large number of routines for file I/O,
streaming AVI data, and editing AVI streams. Finally, there are several
functions for working with joysticks, and a handful of timer functions.

The MCI. The Media Control Interface is a mid-level API that pro-
vides a fairly easy means of working with a variety of multimedia
files and devices, so you can create a sophisticated multimedia appli-
cation with minimum coding. Best of all, the MCI provides two
approaches (two sets of commands) for performing these tasks. The
first, mciSendString, is ideal for prototyping applications; the second,
mciSendCommand, is faster and better suited for the finished prod-
37 March 1999 Delphi Informant
uct. The command strings consist of words arranged in English-like
sentences. For example, the words associated with the playback of a
sound include “load,” “play,” and “stop.” For example:

mciSendString("pause movie", nil, 0, nil);

Conveniently, these command strings have corresponding command
messages, but messages are more complicated. The command mes-
sage corresponding to the above command string looks like this:

mciSendCommand(MovieDevice, MCI_PAUSE, 0, DWORD(nil));

where MovieDevice is the handle of the movie-playing device
returned by calling another command message using the
MCI_OPEN command. As you can see, there’s quite a bit more
involved with command messages than with command strings.
Sometimes, you’re required to supply the third and fourth parame-
ters (flags and parameters, respectively). In a running application,
command messages are much faster than command strings, because
the latter must be parsed.

A high-level class. The MCIWnd class is even easier to use, provid-
ing a quick way to create a multimedia control and associate it with
some type of multimedia event. For example, the following state-
ment (based on code from Delphi’s online help) creates a button on
a form that, when pressed, plays a video clip:

MCIWndCreate(hwndParent, g_hinst, WS_VISIBLE or WS_CHILD or
MCIWNDF_SHOWALL, 'sample.avi');

Because this column is introductory in nature, it probably raises
more questions than answers. However, I plan to explore these top-
ics in more detail in future articles. I also plan to devote another
column to sources of information on multimedia programming,
both books and Internet sites. In the meantime, I’d like to hear
from you concerning your experiences, questions, and discoveries in
working with multimedia in Delphi. ∆

— Alan C. Moore, Ph.D.

Alan Moore is a Professor of Music at Kentucky State University, special-
izing in music composition and music theory. He has been developing
education-related applications with the Borland languages for more than
10 years. He has published a number of articles in various technical jour-
nals. Using Delphi, he specializes in writing custom components and
implementing multimedia capabilities in applications, particularly sound
and music. You can reach Alan on the Internet at acmdoc@aol.com.

	Table of Contents
	Delphi Tools
	OCERIS Ships AutoSQL 2.1
	Component Store Announces SQLQuery 2.2
	toolsfactory Announces ClassExplorer Pro 2.1
	LMD Innovative Releases LMD-Tools 4
	Raize Announces Raize Components II
	Primoz Gabrijelcic Announces GpProfile 1.1
	CenturionSoft Announces EuroFonter
	Datasoft Reveals GhostFill SDK
	Eagle Software Releases CDK 4 and reAct 4

	Delphi News
	Inprise Launches CORBA and Java Tour for Enterprise IT Managers
	Inprise Delivers Enterprise Application Server Solution
	Inprise Announces New Version of MIDAS
	LEAD Announces VCL Components for Delphi

	On the Cover
	The ASP Object Model
	The RequestObject
	The Response Object
	The ServerObject
	The SessionObject
	The Application Object
	Delphi and ASP
	Why Use Delphi?
	Conclusion

	Patterns in Practice
	The Singleton Pattern
	Implementing a Singleton Pattern Class
	TSingletonUsage
	Introduction to TUserConfiguration
	Making TUserConfigurationPersistent
	TUserConfigurationMiscellany
	Generalization or Composition
	Conclusion
	Begin Listing One — Snglton.pas
	Begin Listing Two — UserCfg.pas
	Begin Listing Three — XWRegUtils.pas
	Begin Listing Four — MainFrm.pas

	Multi-Tier
	A Sample Application
	Saving Data
	Starting the Client
	Reconnecting
	In Case They Forget ...

	Undocumented
	A Brief Digression
	Getting “In the Loop”
	Shut It Off
	Getting the Message
	Windows NT and Memory Maps
	The Origin of Events
	Don’t Believe Everything You Read
	The Delphi Way
	A Window All Our Own
	The Heart of the Matter
	The Bottom Line

	New & Used
	Ergonomically Speaking
	Suite Components
	Number Crunching
	Ease of Use
	The Bottom Line
	Conclusion

	File I New

